【題目】如圖,在△ABC中,AC=BC=1,∠C=90°,E、FAB上的動點(diǎn),且∠ECF=45°,分別過E、FBCAC的垂線,垂足分別為HG,兩垂線交于點(diǎn)M

1)當(dāng)點(diǎn)E與點(diǎn)B重合時,請直接寫出MHAC的數(shù)量關(guān)系 ;

2)探索AFEF、BE之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)以C為坐標(biāo)原點(diǎn),以BC所在的直線為x軸,建立直角坐標(biāo)系,請畫出坐標(biāo)系并利用(2)中的結(jié)論證明

【答案】1;(2,證明見解析;(3)見解析.

【解析】

1)如圖1,當(dāng)點(diǎn)與點(diǎn)重合時,點(diǎn)與點(diǎn)重合,可得,四邊形是矩形,進(jìn)一步得到,根據(jù)三線合一可得,證明結(jié)論;

2)如圖2所示,將順時針旋轉(zhuǎn),再利用可證,根據(jù)全等三角形的性質(zhì)和勾股定理即可得出結(jié)論;

3)由題意知四邊形是矩形,根據(jù)(2)的結(jié)論和三角形面積求法可得,繼而可知,即可證明結(jié)論.

解: 1)結(jié)論:,

如圖1,當(dāng)點(diǎn)與點(diǎn)重合時,點(diǎn)與點(diǎn)重合,

,,

,

,

,四邊形是矩形,

,

,

,

,

2)結(jié)論:,

證明:如圖2所示,

,,

順時針旋轉(zhuǎn)

,,;

,

中,

,

,

,即;

3)以C為坐標(biāo)原點(diǎn),以BC所在的直線為x軸,建立直角坐標(biāo)系,如圖(3):

由(2)易知、是等腰直角三角形,

,

,

,

同理可得:,,,

由(2可得,

,

又∵,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)對2019年參加學(xué)業(yè)水平考試的3000名初中畢業(yè)生進(jìn)行了一次視力抽樣調(diào)查,繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖.某區(qū)2019年初中畢業(yè)生視力抽樣頻數(shù)分布表

視力

頻數(shù)/

50

50

頻率

0.25

0.15

60

0.30

0.25

10

請根據(jù)圖表信息回答下列問題:

1)在頻數(shù)分布表中,求的值和的值:

2)將頻數(shù)分布直方圖補(bǔ)充完整;

3)若視力在4.9以上(含4.9)均為正常,根據(jù)以上信息估計全區(qū)初中畢業(yè)生中

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車制造廠開發(fā)了一款新式自行車,計劃6月份生產(chǎn)安裝600由于抽調(diào)不出足夠的熟練工來完成新式自行車的安裝,工廠決定招聘一些新工人他們經(jīng)過培訓(xùn)后也能獨(dú)立進(jìn)行安裝.調(diào)研部門發(fā)現(xiàn):1名熱練工和2名新工人每日可安裝8輛自行車;2名熟練工和3名新工人每日可安裝14輛自行車

(1)每名熟練工和新工人每日分別可以安裝多少輛自行車?

(2)如果工廠招聘n名新工人(0<n<10).使得招聘的新工人和抽調(diào)熟練工剛好能完成6月份(30的安裝任務(wù),那么工廠有哪幾種新工人的招聘方案?

(3)該自行車關(guān)于輪胎的使用有以下說明本輪胎如安裝在前輪,安全行使路程為11千公里如安裝在后輪,安全行使路程為9千公里.請問一對輪胎能行使的最長路程是多少千公里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳館普通票價20/,暑假為了促銷新推出兩種優(yōu)惠卡

金卡售價600/,每次憑卡不再收費(fèi)

銀卡售價150/每次憑卡另收10

暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時,所需總費(fèi)用為y

(1)分別寫出選擇銀卡、普通票消費(fèi)時,yx之間的函數(shù)關(guān)系式;

(2)在同一坐標(biāo)系中,若三種消費(fèi)方式對應(yīng)的函數(shù)圖象如圖所示,請求出點(diǎn)A、B、C的坐標(biāo)

(3)請根據(jù)函數(shù)圖象,直接寫出選擇哪種消費(fèi)方式更合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知百合酒店的三人間和雙人間客房標(biāo)價為:三人間為每人每天200元,雙人間為每人每天300元,為吸引客源,促進(jìn)旅游,在“十一”黃金周期間酒店進(jìn)行優(yōu)惠大酬賓,凡團(tuán)體入住一律五折優(yōu)惠.一個50人的旅游團(tuán)在十月二號到該酒店住宿,租住了一些三人間、雙人間客房.

1)如果租住的每個客房正好住滿,并且一天一共花去住宿費(fèi)6300元.求租住了三人間、雙人間客房各多少間?

2)設(shè)三人間共住了x人,這個團(tuán)一天一共花去住宿費(fèi)y元,請寫出yx的函數(shù)關(guān)系式;

3)一天6300元的住宿費(fèi)是否為最低?如果不是,請設(shè)計一種方案:要求租住的房間正好被住滿的,并使住宿費(fèi)用最低,請寫出設(shè)計方案,并求出最低的費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知BADBCE均為等腰直角三角形,∠BAD=BCE=90°,點(diǎn)MDE的中點(diǎn).過點(diǎn)EAD平行的直線交射線AM于點(diǎn)N

(1)當(dāng)A,BC三點(diǎn)在同一直線上時(如圖1),求證:MAN的中點(diǎn);

(2)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)AB,E三點(diǎn)在同一直線上時(如圖2),求證:CAN為等腰直角三角形;

(3)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn)到圖3的位置時,(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)過程中,對教材中的一個有趣問題做如下探究:

(習(xí)題回顧)已知:如圖1,在ABC中,∠ACB=90°,AE是角平分線,CD是高,AE、CD相交于點(diǎn)F.求證:∠CFE=CEF

(變式思考)如圖2,在ABC中,∠ACB=90°CDAB邊上的高,若ABC的外角∠BAG的平分線交CD的延長線于點(diǎn)F,其反向延長線與BC邊的延長線交于點(diǎn)E,則∠CFE與∠CEF還相等嗎?說明理由;

(探究廷伸)如圖3,在ABC中,在AB上存在一點(diǎn)D,使得∠ACD=B,角平分線AECD于點(diǎn)FABC的外角∠BAG的平分線所在直線MNBC的延長線交于點(diǎn)M.試判斷∠M與∠CFE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).

(1)求辦公樓AB的高度;

(2)若要在AE之間掛一些彩旗,請你求出A,E之間的距離.

(參考數(shù)據(jù):sin22°cos22°,tan22°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=2,AB=3,過點(diǎn)A,C作相距為2的平行線段AE,CF,分別交CD,AB于點(diǎn)E,F(xiàn),則DE的長是(  )

A. B. C. 1 D.

查看答案和解析>>

同步練習(xí)冊答案