【題目】如圖,在⊙O中,半徑OC⊥弦AB于點(diǎn)D,點(diǎn)E為優(yōu)弧AB上一點(diǎn),連接AE、BE、AC,過點(diǎn)C的直線與EA延長線交于點(diǎn)F,且∠ACF=∠AEB.
(1)求證:CF與⊙O相切;
(2)若∠AEB=60°,AB=4,求⊙O的半徑;
(3)在(2)的條件下,若AE=4,求EC的長.
【答案】(1)證明見解析;(2)4;(3)2+2.
【解析】
(1)根據(jù)垂徑定理得到弧AC=弧BC,求得∠FEC=∠BEC=∠AEB,等量代換得到∠ACF=∠BEC,推出AB∥CF,于是得到結(jié)論;
(2)連接OA,根據(jù)圓周角定理得到∠AEC=30°,求得∠AOD=2∠AEC=60°,解直角三角形的即可得到結(jié)論;
(3)連接OE,過A作AH⊥CE于H,根據(jù)勾股定理的逆定理得到∠AOE=90°,根據(jù)圓周角定理得到∠ACE=∠AOE=45°,解直角三角形即可得到結(jié)論.
(1)證明:∵半徑OC⊥弦AB于點(diǎn)D,
∴弧AC=弧BC,
∴∠FEC=∠BEC=∠AEB,
∵∠ACF=∠AEB,
∴∠ACF=∠BEC,
∵∠BAC=∠BEC,
∴∠ACF=∠CAB,
∴AB∥CF,
∵OC⊥AB,
∴OC⊥CF,
∴CF與⊙O相切;
(2)解:連接OA,
∵∠AEB=60°,
∴∠AEC=30°,
∴∠AOD=2∠AEC=60°,
∴在Rt△AOD中,AD=AB=2,∠AOD=60°,
∴OA==4,
∴⊙O的半徑為4;
(3)解:連接OE,過A作AH⊥CE于H,
∵OE2+OA2=42+42=32=(4)2=AE2,
∴∠AOE=90°,
∴∠ACE=∠AOE=45°,
在Rt△AEH中,∵∠AEH=30°,AE=4,
∴AH=2,EH=2,
在Rt△AHC中,∵∠ACH=45°,
∴CH=AH=2,
∴CE=CH+EH=2+2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為⊙的直徑,點(diǎn),是位于兩側(cè)的半圓上的動(dòng)點(diǎn),射線切⊙于點(diǎn).連接,,與交于點(diǎn),是射線上一動(dòng)點(diǎn),連接,,且.
(1)求證:;
(2)填空:
①若,當(dāng)__________時(shí),四邊形是菱形;
②若,當(dāng)_________時(shí),四邊形是正方形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果分為A,B,C,D四個(gè)等級.請根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補(bǔ)全條形圖;
(3)若該中學(xué)八年級共有700名學(xué)生,請你估計(jì)該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動(dòng)員的重點(diǎn)對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費(fèi)2000元,購買乙種足球共花費(fèi)1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個(gè)乙種足球比購買一個(gè)甲種足球多花20元;
(1)求購買一個(gè)甲種足球、一個(gè)乙種足球各需多少元;
(2)2018年這所學(xué)校決定再次購買甲、乙兩種足球共50個(gè).恰逢該商場對兩種足球的售價(jià)進(jìn)行調(diào)整,甲種足球售價(jià)比第一次購買時(shí)提高了10%,乙種足球售價(jià)比第一次購買時(shí)降低了10%.如果此次購買甲、乙兩種足球的總費(fèi)用不超過2910元,那么這所學(xué)校最多可購買多少個(gè)乙種足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村在推進(jìn)美麗鄉(xiāng)村活動(dòng)中,決定建設(shè)幸福廣場,計(jì)劃鋪設(shè)相同大小規(guī)格的紅色和藍(lán)色地磚.經(jīng)過調(diào)査.獲取信息如下:
購買數(shù)量低于5000塊 | 購買數(shù)量不低于5000塊 | |
紅色地磚 | 原價(jià)銷售 | 以八折銷售 |
藍(lán)色地磚 | 原價(jià)銷售 | 以九折銷售 |
如果購買紅色地磚4000塊,藍(lán)色地磚6000塊,需付款86000元;如果購買紅色地磚10000塊,藍(lán)色地磚3500塊,需付款99000元.
(1)紅色地磚與藍(lán)色地磚的單價(jià)各多少元?
(2)經(jīng)過測算,需要購置地磚12000塊,其中藍(lán)色地磚的數(shù)量不少于紅色地磚的一半,并且不超過6000塊,如何購買付款最少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)E,CF⊥AF,且CF=CE.
(1)求證:CF是⊙O的切線;
(2)若sin∠BAC=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次中學(xué)生田徑運(yùn)動(dòng)會(huì)上,根據(jù)參加男子跳高初賽的運(yùn)動(dòng)員的成績(單位:m),繪制出如下的統(tǒng)計(jì)圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)圖1中a的值為 ;
(Ⅱ)求統(tǒng)計(jì)的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)這組初賽成績,由高到低確定9人進(jìn)入復(fù)賽,請直接寫出初賽成績?yōu)?.65m的運(yùn)動(dòng)員能否進(jìn)入復(fù)賽.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在y軸上,邊AC與x軸交于點(diǎn)D,經(jīng)過A,D兩點(diǎn)的圓的圓心F恰好在y軸上,⊙F與邊BC相切于點(diǎn)E,與x軸交于點(diǎn)M,與y軸相交于另一點(diǎn)G,連接AE.
(1)求證:AE平分∠BAC;
(2)若點(diǎn)A,D的坐標(biāo)分別為(0,﹣1),(2,0),求⊙F的半徑;
(3)求經(jīng)過三點(diǎn)M,F,D的拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx經(jīng)過點(diǎn)A(﹣3,﹣3)和點(diǎn)P(m,0),且m≠0.
(1)如圖,若該拋物線的對稱軸經(jīng)過點(diǎn)A,求此時(shí)y的最小值和m的值.
(2)若m=﹣2時(shí),設(shè)此時(shí)拋物線的頂點(diǎn)為B,求四邊形OAPB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com