精英家教網 > 初中數學 > 題目詳情
如圖,在直角坐標系xOy中,二次函數圖象的頂點坐標為C(4,-),且在x軸上截得的線段AB的長為6.
(1)求二次函數的解析式;
(2)設拋物線與y軸的交點為D,求四邊形DACB的面積;
(3)在x軸上方的拋物線上,是否存在點P,使得∠PAC被x軸平分?如果存在,請求出P點的坐標;如果不存在,請說明理由.
【答案】分析:(1)已知了拋物線的頂點坐標即可得出拋物線的對稱軸方程,結合AB的長度即可求出A、B的坐標,進而可用待定系數法求出拋物線的解析式;
(2)根據拋物線的解析式易求得D點坐標,可將四邊形DACB的面積分成△DAB和△ABC兩部分來求;
(3)此題可通過構建相似三角形求解,過P作PF⊥x軸于F,設拋物線的對稱軸與x軸的交點為E,若∠PAC被x軸平分,那么△APF∽△ACE,根據相似三角形所得到的比例線段即可求出P點的坐標.
解答: 解:
(1)根據題意,得:OE=4,AE=BE=3
∴OA=1,OB=7即A(1,0)、B(7,0)
設y=a(x-1)(x-7)
∵x=4,y=-,∴a=
所求解析式為y=(x-1)(x-7)(或y=x2-x+

(2)連接DA、AC、BC、DB
當x=0時,y=,∴D(0,
∴S四邊形DACB=S△DAB+S△ACB==

(3)假設存在點P(x,y),使x軸平分∠PAC,過點P作PF⊥x軸,垂足為點F
則△APF∽△ACE
=,即:
3()=
∴x2-11x+10=0,x1=10,x2=1
當x=10時,y=
當x=1時,y=0(不合題意,舍去)
∴P(10,3).
點評:此題主要考查了二次函數解析式的確定、圖形面積的求法以及相似三角形的判定和性質.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,在直角坐標系中,⊙M與y軸相切于點C,與x軸交于A(x1,0),B(x2,0)兩點,其中x1,x2是方程x2-10x+16=0的兩個根,且x1<x2,連接MC,過A、B、C三點的拋物線的頂點為N.
(1)求過A、B、C三點的拋物線的解析式;
(2)判斷直線NA與⊙M的位置關系,并說明理由;
(3)一動點P從點C出發(fā),以每秒1個單位長的速度沿CM向點M運動,同時,一動點Q從點B出發(fā),沿射線BA以每秒4個單位長度的速度運動,當P運動到M點時,兩動點同時停止運動,當時間t為何值時,以Q、O、C為頂點的三角形與△PCO相似?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖:在直角坐標系中放入一邊長OC為6的矩形紙片ABCO,將紙翻折后,使點B恰好落在x軸上,記為B',折痕為CE,已知tan∠OB′C=
3
4

(1)求出B′點的坐標;
(2)求折痕CE所在直線的解析式;
(3)作B′G∥AB交CE于G,已知拋物線y=
1
8
x2-
14
3
通過G點,以O為圓心OG的長為精英家教網半徑的圓與拋物線是否還有除G點以外的交點?若有,請找出這個交點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

已如:如圖,在直角坐標系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,AB為⊙C的直徑,PA切⊙O于點A,交x軸的負半軸于點P,連接PC交OA于點D.
(1)求證:PC⊥OA;
(2)若點P在x軸的負半軸上運動,原題的其他條件不變,設點P的坐標為(x,0),四邊形
POCA的面積為S,求S與點P的橫坐標x之間的函數關系式;
(3)在(2)的情況下,分析并判斷是否存在這樣的一點P,使S四邊形POCA=S△AOB,若存在,直接寫出點P的坐標(不寫過程);若不存在,簡要說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖:在直角坐標系中描出A(-4,-4),B(1,-4),C(2,-1),D(-3,-1)四個點.
(1)順次連接A,B,C,D四個點組成的圖形是什么圖形?
(2)畫出(1)中圖形分別向上5個單位向右3個單位后的圖形.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角坐標系中,A的坐標為(a,0),D的坐標為(0,b),且a、b滿足
a+2
+(b-4)2=0

(1)求A、D兩點的坐標;
(2)以A為直角頂點作等腰直角三角形△ADB,直接寫出B的坐標;
(3)在(2)的條件下,當點B在第四象限時,將△ADB沿直線BD翻折得到△A′DB,點P為線段BD上一動點(不與B、D重合),PM⊥PA交A′B于M,且PM=PA,MN⊥PB于N,請?zhí)骄浚篜D、PN、BN之間的數量關系.

查看答案和解析>>

同步練習冊答案