【題目】已知,如圖,在ABC中,∠B<∠C,AD,AE分別是ABC的高和角平分線,

1)若∠B=30°,∠C=50°.則∠DAE的度數(shù)是 .(直接寫出答案)

2)寫出∠DAE、∠B、∠C的數(shù)量關(guān)系: ,并證明你的結(jié)論.

【答案】110°;(2(∠C-B).

【解析】

1)在三角形ABC中,由∠B與∠C的度數(shù)求出∠BAC的度數(shù),根據(jù)AE為角平分線求出∠BAE的度數(shù),由∠BAD-B即可求出∠DAE的度數(shù);

2)仿照(1)得出∠DAE與、∠B、∠C的數(shù)量關(guān)系即可.

1)∵∠B=30°,∠C=50°,

∴∠BAC=180°-B-C=100°

又∵AEABC的角平分線,

∴∠BAE=BAC=50°,

ADABC的高,

∴∠BAD=90°-B=90°-30°=60°,

則∠DAE=BAD-BAE=10°,

故答案為:10°

2)∠DAE=(∠C-B),

理由如下:∵ADABC的高,

∴∠ADC=90°,

∴∠DAC=180°-ADC-C=90°-C

AEABC的角平分線,

∴∠EAC=BAC,

∵∠BAC=180°-B-C

∴∠DAE=EAC-DAC

=BAC-90°-C),

=180°-B-C-90°+C,

=90°-B-C-90°+C,

=(∠C-B).

故答案為:(∠C-B).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2-5ax+4a與x軸相交于點A,B,且過點C(5,4).

(1)求a的值和該拋物線頂點P的坐標;

(2)請你設(shè)計一種平移的方法使平移后拋物線的頂點落在第二象限,并寫出平移后拋物線的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列4個結(jié)論:abc<0;b<a+c;4a+2b+c>0;b2﹣4ac>0其中正確結(jié)論的有(  )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】推理填空:

如圖,∠1+2180°,∠A=∠C,試說明:AEBC

解:因為∠1+2180°,

所以AB   (同旁內(nèi)角互補,兩直線平行)

所以∠A=∠EDC(   )

又因為∠A=∠C(已知)

所以∠EDC=∠C(等量代換),

所以AEBC(   )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城,在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛時間x(小時)之間的函數(shù)關(guān)系如圖所示,根據(jù)圖象提供的信息,解決下列問題:

1AB兩城相距多少千米?

2)分別求甲、乙兩車離開A城的距離yx的關(guān)系式.

3)求乙車出發(fā)后幾小時追上甲車?

4)求甲車出發(fā)幾小時的時候,甲、乙兩車相距50千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:

①AC=AD;②BD⊥AC四邊形ACED是菱形.

其中正確的個數(shù)是( )

A0 B1 C2 D3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列3×3網(wǎng)格圖都是由9個相同的小正方形組成,每個網(wǎng)格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:

(1)選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形;

(2)選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形;

(3)選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形.

(請將三個小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,把△ABC向上平移3個單位長度,再向右平移2個單位長度,得到△A'B'C'

1)在圖中畫出△ABC'

2)寫出A',B'的坐標;

3)求出△COC的面積;

4)在y軸上是否存在一點P,使得△BCP與△ABC面積相等?若存在,請直接寫出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列解題過程

例:若代數(shù)式的值是,求的取值范圍.

解:原式=

時,原式,解得 (舍去);

時,原式,符合條件;

時,原式,解得 (舍去)

所以,的取值范圍是

上述解題過程主要運用了分類討論的方法,請你根據(jù)上述理解,解答下列問題:

時,化簡:

若等式成立,則的取值范圍是

,求的取值.

查看答案和解析>>

同步練習冊答案