如圖,已知拋物線軸交于點.

(1)平移該拋物線使其經過點和點(2,0),求平移后的拋物線解析式;
(2)求該拋物線的對稱軸與(1)中平移后的拋物線對稱軸之間的距離.

(1) ;(2)兩對稱軸之間的距離為.

解析試題分析:(1)由原拋物線求得點的坐標,由點和點坐標求得平移后的拋物線解析式;(2)求得原拋物線和平移后拋物線的對稱軸,則可得到兩對稱軸間的距離.
試題解析:(1)設平移后的拋物線解析式為.由已知得,
.過點,∴. ∴,∴.
(2)的對稱軸為直線,的對稱軸為直線 ,
∴兩對稱軸之間的距離為.
【考點】1.二次函數(shù)解析式的求法;2.二次函數(shù)的圖象.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

某農戶計劃利用現(xiàn)有的一面墻(墻長8米),再修四面墻,建造如圖所示的長方體水池,培育不同品種的魚苗.他已備足可以修高為1.5m、長18m的墻的材料準備施工,設圖中與現(xiàn)有一面墻垂直的三面墻的長度都為xm,即AD=EF=BC=xm.(不考慮墻的厚度).

(1)若想水池的總容積為36m3,x應等于多少?
(2)求水池的總容積V與x的函數(shù)關系式,并直接寫出x的取值范圍;
(3)若想使水池的總容積V最大,x應為多少?最大容積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知二次函數(shù)的圖象經過點A(6,0)、B(﹣2,0)和點C(0,﹣8).

(1)求該二次函數(shù)的解析式;
(2)設該二次函數(shù)圖象的頂點為M,若點K為x軸上的動點,當△KCM的周長最小時,點K的坐標為   ;
(3)連接AC,有兩動點P、Q同時從點O出發(fā),其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運動,當P、Q兩點相遇時,它們都停止運動,設P、Q同時從點O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點在運動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關于t的函數(shù)關系式,并寫出自變量t的取值范圍;
③設S0是②中函數(shù)S的最大值,直接寫出S0的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知拋物線的圖象,將其向右平移兩個單位后得到圖象

(1)求圖象所表示的拋物線的解析式:
(2)設拋物線軸相交于點、點(點位于點的右側),頂點為點,點位于軸負半軸上,且到軸的距離等于點軸的距離的2倍,求所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線與x軸交與點A(1,0)與點B, 且過點C(0,3),

(1)求該拋物線的解析式;
(2)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?,若存在,求出點P的坐標及△PBC的面積最大值.若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

“惠民”經銷店為某工廠代銷一種工業(yè)原料(代銷是指廠家先免費提供貨源,待貨物售出后再進行結算,未售出的由廠家負責處理).當每噸售價為260元時,月銷售量為45噸;該經銷店為提高經營利潤,準備采取降價的方式進行促銷,經市場調查發(fā)現(xiàn):當每噸售價每下降10元時,月銷售量就會增加7.5噸.綜合考慮各種因素,每售出一噸工業(yè)原料共需支付廠家及其它費用100元.
(1)當每噸售價是240元時,計算此時的月銷售量;
(2)若在“薄利多銷、讓利于民”的原則下,當每噸原料售價為多少時,該店的月利潤為9000元;
(3)每噸原料售價為多少時,該店的月利潤最大,求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,矩形OABC在平面直角坐標系中,O為坐標原點,點A(0,4),C(2,0),將矩形OABC繞點O按順時針方向旋轉1350,得到矩形EFGH(點E與O重合).

(1)若GH交y軸于點M,則∠FOM=      ,OM=        ;
(2)矩形EFGH沿y軸向上平移t個單位.
①直線GH與x軸交于點D,若AD∥BO,求t的值;
②若矩形EFHG與矩形OABC重疊部分的面積為S個平方單位,試求當0<t≤時,S與t之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于點C,x1,x2是方程的兩根.

(1)若拋物線的頂點為D,求SABC:SACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知拋物線經過A(-3,0),B(1,0),C(0,3)三點,其頂點為D,對稱軸是直線l,l與x軸交于點H.

(1)求該拋物線的解析式;
(2)若點P是該拋物線對稱軸l上的一個動點,求△PBC周長的最小值;
(3)如圖(2),若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設點E的橫坐標為m,△ADF的面積為S.
①求S與m的函數(shù)關系式;
②S是否存在最大值?若存在,求出最大值及此時點E的坐標; 若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案