【題目】閱讀:我們約定,在平面直角坐標系中,經(jīng)過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=x+4.如圖,在平面直角坐標系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過B.C兩點,頂點D在正方形內(nèi)部.
(1)寫出點M(2,3)任意兩條特征線___________________
(2)若點D有一條特征線是y=x+1,求此拋物線的解析式________________________
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的菱形網(wǎng)格圖中,每個小菱形的邊長均為個單位,且每個小菱形內(nèi)角中的銳角為60°.
(1)直接寫出的三個頂點的坐標;
(2)在圖中作出以點為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)60°后的圖形;
(3)根據(jù)(2),請直接寫出線段掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.
(1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子,并用線段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標系中,拋物線經(jīng)過點兩點,且與y軸交于點C.
(1)求拋物線的表達式;
(2)如圖①,在拋物線的對稱軸上尋找一點M,使得△ACM的周長最小,求點M的坐標.
(3)如圖②,用寬為4個單位長度的直尺垂直于x軸,并沿x軸左右平移,直尺的左右兩邊所在的直線與拋物線相交于P,Q兩點(點P在點Q的左側(cè)),連接PQ,在線段PQ上方拋物線上有一動點D,連接DP,DQ.若點P的橫坐標為,求△DPQ面積的最大值,并求此時點D的坐標;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(k≠0)的圖象與正比例函數(shù)y=2x的圖象相交于A(1,a)、B兩點,點C在第四象限,CA∥y軸,且CB⊥AB.
(1)求反比例函數(shù)的解析式及點B的坐標;
(2)求tanC的值和△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)當銷售單價為70元時,每天的銷售利潤是多少?
(2)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;
(3)如果該企業(yè)每天的總成本不超過7000元,那么銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的直徑,點B在⊙O上,連接BC、BD,直線AB與CD的延長線相交于點A,AB2=ADAC,OE∥BD交直線AB于點E,OE與BC相交于點F.
(1)求證:直線AE是⊙O的切線;
(2)若⊙O的半徑為3,cosA=,求OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,G是BC的中點,過A、D、G三點的圓O與邊AB、CD分別交于點E、點F,給出下列說法,其中正確說法的個數(shù)是( 。
(1)AC與BD的交點是圓O的圓心;
(2)AF與DE的交點是圓O的圓心;
(3);
(4)DE>DG,
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com