【題目】已知拋物線y=﹣x2+2x+3的頂點(diǎn)為P,與x軸的兩個(gè)交點(diǎn)為A,B,那么△ABP的面積等于(
A.16
B.8
C.6
D.4

【答案】B
【解析】解:∵y=﹣x2+2x+3,∴y=﹣(x﹣1)2+4,
頂點(diǎn)坐標(biāo)為(1,4)
0=﹣(x﹣1)2+4,
∴x1=﹣1,x2=3,
與x軸的兩個(gè)交點(diǎn)為A,B(3,0),(﹣1,0),
∴AB=4,
P到AB的距離為:4,
∴SABP= ×4×4=8,
故選:B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解拋物線與坐標(biāo)軸的交點(diǎn)(一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x與反比例函數(shù)y= (k≠0,x>0)的圖象交于點(diǎn)A(1,a),B是反比例函數(shù)圖象上一點(diǎn),直線OB與x軸的夾角為α,tanα=
(1)求k的值.
(2)求點(diǎn)B的坐標(biāo).
(3)設(shè)點(diǎn)P(m,0),使△PAB的面積為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新定義:我們把兩條中線互相垂直的三角形稱為“中垂三角形”.如圖所示,△ABC中,AF、BE是中線,且AF⊥BE,垂足為P,像△ABC這樣的三角形稱為“中垂三角形”,如果∠ABE=30°,AB=4,那么此時(shí)AC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙C過原點(diǎn),且與兩坐標(biāo)軸分別交于點(diǎn)A、點(diǎn)B,點(diǎn)A的坐標(biāo)為(0,3),M是第三象限內(nèi) 上一點(diǎn),∠BMO=120°,則⊙C的半徑長(zhǎng)為(

A.6
B.5
C.3
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:平行四邊形ABCD的兩邊AB、AD的長(zhǎng)是關(guān)于x的方程x2﹣mx+ =0的兩個(gè)實(shí)數(shù)根.
(1)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(2)若AB的長(zhǎng)為2,那么平行四邊形ABCD的周長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(4m+1)x+2m﹣1=0;
(1)求證:不論m 任何實(shí)數(shù),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的兩根為x1、x2且滿足 ,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在同一坐標(biāo)系下,一次函數(shù)y=ax+b與二次函數(shù)y=ax2+bx+4的圖象大致可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)四邊形ABCD是邊長(zhǎng)為1的正方形,以對(duì)角線AC為邊作第二個(gè)正方形ACEF、再以對(duì)角線AE為邊作第三個(gè)正方形AEGH,如此下去….若正方形ABCD的邊長(zhǎng)記為a1 , 按上述方法所作的正方形的邊長(zhǎng)依次為a2 , a3 , a4 , …,an , 則an=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的對(duì)角線相交于點(diǎn)O,M、N分別是OD、OC上異于O、C、D的點(diǎn).
(1)請(qǐng)你在下列條件①DM=CN,②OM=ON,③MN是△OCD的中位線,④MN∥AB中任選一個(gè)添加條件(或添加一個(gè)你認(rèn)為更滿意的其他條件),使四邊形ABNM為等腰梯形,你添加的條件是
(2)添加條件后,請(qǐng)證明四邊形ABNM是等腰梯形.

查看答案和解析>>

同步練習(xí)冊(cè)答案