5.如圖,在9×6的方格紙中,小樹從位置A經(jīng)過平移旋轉(zhuǎn)后到達位置B,下列說法中正確的是( 。
A.先向右平移6格,再繞點B順時針旋轉(zhuǎn)45°
B.先向右平移6格,再繞點B逆時針旋轉(zhuǎn)45°
C.先向右平移6格,再繞點B順時針旋轉(zhuǎn)90°
D.先向右平移6格,再繞點B逆時針旋轉(zhuǎn)90°

分析 先判斷出∠1的度數(shù),再進行解答即可.

解答 解:∵小樹經(jīng)過正方形BCDE的頂點B、D,
∴∠1=45°,
∴小樹從位置A經(jīng)過旋轉(zhuǎn)平移后到位置B時應(yīng)繞B點逆時針旋轉(zhuǎn)45°,再向右平移6格.
故選B

點評 本題考查的是幾何變換的類型,熟知圖形旋轉(zhuǎn)變換及平移變換的性質(zhì)是解答此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,直線AB、CD交于點O,OP平分∠BOC,若∠AOD=104°,則∠POD等于(  )
A.52°B.104°C.120°D.128°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.下列計算正確的是( 。
A.-($\frac{1}{3}$)-2=9B.(-2a32=4a6C.$\sqrt{(-2a)^{2}}$=-2D.a6÷a3=a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.已知△ABC∽△DEF,且△ABC的面積與△DEF的面積之比為4:9,則AB:DE=( 。
A.4:9B.2:3C.16:81D.9:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在平面直角坐標系中,已知A、B、C三點的坐標分別為A(-2,0),B(6,0),C(0,-3).
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)過C點作CD平行于x軸交拋物線于點D,寫出D點的坐標,并求AD、BC的交點E的坐標;
(3)若拋物線的頂點為P,連結(jié)PC、PD.
①判斷四邊形CEDP的形狀,并說明理由;
②若在拋物線上存在點Q,使直線OQ將四邊形PCED分成面積相等的兩個部分,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.計算
(1)$4\sqrt{5}+\sqrt{45}-\sqrt{8}+4\sqrt{2}$
(2)$({\sqrt{24}-\sqrt{2}})-({\sqrt{8}+\sqrt{6}})$;
(3)$({2\sqrt{48}-3\sqrt{27}})÷\sqrt{6}$
(4)$(\sqrt{48}-4\sqrt{\frac{1}{8}})-(3\sqrt{\frac{1}{3}}-2\sqrt{0.5})$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖1,正方形ABCD與正方形AEFG的邊AB,AE(AB<AE)在一條直線上,正方形AEFG以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過程中,兩個正方形只有點A重合,其它頂點均不重合,連接BE,DG.

(1)當正方形AEFG旋轉(zhuǎn)至如圖2所示的位置時,求證:BE=DG;
(2)如圖3,如果α=45°,AB=2,AE=3$\sqrt{3}$.
①求BE的長;②求點A到BE的距離;
(3)當點C落在直線BE上時,連接FC,直接寫出∠FCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.探索:
(x-1)(x+1)=x2-1         (x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1    (x-1)(x4+x3+x2+x+1)=x5-1

(1)試求26+25+24+23+22+2+1的值;
(2)試猜想22015的個位數(shù)是多少,并說明理由;
(3)判斷22015+22014+22013+22012+…+22+2+1的值的個位數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.已知a-2b2=3,則2015-a+2b2的值是2012.

查看答案和解析>>

同步練習(xí)冊答案