【題目】(2016四川省達(dá)州市)如圖,P是等邊三角形ABC內(nèi)一點(diǎn),將線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為____________.
【答案】.
【解析】試題解析:連結(jié)PQ,如圖,
∵△ABC為等邊三角形,∴∠BAC=60°,AB=AC,∵線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ為等邊三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,在△APC和△ABQ中,∵AC=AB,∠CAP=∠BAQ,AP=AQ,∴△APC≌△ABQ,∴PC=QB=10,在△BPQ中,∵=64,,,而64+36=100,∴,∴△PBQ為直角三角形,∠BPQ=90°,∴S四邊形APBQ=S△BPQ+S△APQ==.故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于任意三點(diǎn)A,B,C,給出如下定義:如果矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,B,C的覆蓋矩形.點(diǎn)A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點(diǎn)A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點(diǎn)A,B,C的覆蓋矩形,其中矩形AB3C3D3是點(diǎn)A,B,C的最優(yōu)覆蓋矩形.
(1)已知A(2,3),B(5,0),C(, 2).
①當(dāng)時(shí),點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為 ;
②若點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為40,則t的值為 ;
(2)已知點(diǎn)D(1,1),點(diǎn)E(, ),其中點(diǎn)E是函數(shù)的圖像上一點(diǎn),⊙P是點(diǎn)O,D,E的一個面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是⊙O的內(nèi)接三角形,AB為⊙O的直徑,OD⊥AB于點(diǎn)O,且∠ODC=2∠A.
(1)求證:CD是⊙O的切線;
(2)若AB=6,tan∠A=,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)C在線段AB上,點(diǎn)M,N分別在線段AC與線段BC上,且AM=2MC,BN=2NC.
(1)若AC=9,BC=6,求線段MN的長;
(2)若MN=5,求線段AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“創(chuàng)城文明志愿者”活動中,小明和小強(qiáng)兩位同學(xué)某天來到城區(qū)中心的十字路口,觀察、統(tǒng)計(jì)上午7:00~12:00中闖紅燈的人數(shù),制作了如下兩個數(shù)據(jù)統(tǒng)計(jì)圖.
(1)求該天上午7:00~12:00每小時(shí)闖紅燈人數(shù)的平均數(shù);
(2)估計(jì)一個月(按30天計(jì)算)上午7:00~12:00在該十字路口闖紅燈的未成年人約有 人;
(3)根據(jù)統(tǒng)計(jì)圖提供的信息向交通管理部門提出一條合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,雙曲線y= (k≠0)與拋物線y=ax2+bx(a≠0)交于A、B、C三點(diǎn),已知B(4,2),C(-2,-4),直線CO交雙曲線于另一點(diǎn)D,拋物線與x軸交于另一點(diǎn)E.
(1)求雙曲線和拋物線的解析式;
(2)在拋物線上是否存在點(diǎn)P,使得∠POE+∠BCD=90°?若存在,請求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)如圖2所示,過點(diǎn)B作直線L⊥OB,過點(diǎn)D作DF⊥L于F,BD與OF交于點(diǎn)P,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在ABC 中, BAC 90, AB AC ,點(diǎn) D 為直線 BC 上的一動點(diǎn)(點(diǎn) D 不與點(diǎn) B 、C 重合). 以 AD 為邊作正方形 ADEF ,連接CF .
(1)如圖 1,當(dāng)點(diǎn) D 在線段 BC 上時(shí),求證: BD CF ;
(2)如圖 2,當(dāng)點(diǎn) D 在線段 BC 的延長線上時(shí),其他條件不變,請直接寫出CF 、 BC 、CD 三條線段之間的數(shù)量關(guān)系;
(3)如圖 3,當(dāng)點(diǎn) D 在線段 BC 的反向延長線上時(shí),且點(diǎn) A 、 F 分別在直線 BC 的兩側(cè),其他條件不變, 若正方形 ADEF 的邊長為 2 ,對角線 AE 、 DF 相交于點(diǎn)O ,連接OC ,求OC 的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD//BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,BC=1,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D,E分別在邊AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于點(diǎn)F.
(1)求證: ;
(2)請?zhí)骄烤段DE,CE的數(shù)量關(guān)系,并說明理由;
(3)若CD⊥AB,AD=2,BD=3,求線段EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com