【題目】a=0.32,b=32c=,d=,則它們的大小關(guān)系是( 。

A. abcd B. badc C. adcb D. cadb

【答案】B

【解析】a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣, , ,

,

∴b<a<d<c.

故選:B.

點(diǎn)睛: (1)此題主要考查了實(shí)數(shù)大小比較的方法,要熟練掌握,解答此題的關(guān)鍵是要明確:正實(shí)數(shù)>0>負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對值大的反而。

(2)此題還考查了負(fù)整數(shù)指數(shù)冪的運(yùn)算,要熟練掌握,解答此題的關(guān)鍵是要明確:①a﹣p=(a≠0,p為正整數(shù));②計(jì)算負(fù)整數(shù)指數(shù)冪時(shí),一定要根據(jù)負(fù)整數(shù)指數(shù)冪的意義計(jì)算;③當(dāng)?shù)讛?shù)是分?jǐn)?shù)時(shí),只要把分子、分母顛倒,負(fù)指數(shù)就可變?yōu)檎笖?shù).(3)此題還考查了零指數(shù)冪的運(yùn)算,要熟練掌握,解答此題的關(guān)鍵是要明確:①a0=1(a≠0);00≠1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線相交于點(diǎn)O,CAB的平分線分別交BD、BCE、F,作BHAF于點(diǎn)H分別交AC、CD于點(diǎn)G、P,連結(jié)GE、GF

1)求證:OAE≌△OBG

2)試問:四邊形BFGE是否為菱形?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=90°,C、D是AB三等分點(diǎn),AB分別交OC、OD于點(diǎn)E、F,求證:AE=BF=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】推理填空:

如圖,已知∠12,BC,可推得ABCD.理由如下:

∵∠12(已知),且∠14(____________),

∴∠24(等量代換),

CEBF(__________________________),

∴∠________3(______________________)

又∵∠BC(已知),

∴∠3B(等量代換)

ABCD(__________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:E、F分別是ABCD上的點(diǎn),DE、AF分別交BC于點(diǎn)G、H, AB∥CD,∠A∠D,試說明:(1AF∥ED;2∠BED∠A;(3) ∠1∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x、y的方程組

(1)當(dāng)a滿足22a+3﹣22a+1=96時(shí),求方程組的解;

(2)當(dāng)程組的解滿足x+y=16時(shí),求a的值;

(3)試說明:不論a取什么實(shí)數(shù),x的值始終為正數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,點(diǎn)F 是CD延長線上的一點(diǎn),且AD平分∠BDF,AE⊥CD于點(diǎn)E.

⑴ 求證:AB=AC.

⑵ 若BD=11,DE=2,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別交與、兩點(diǎn),

)寫出點(diǎn)的坐標(biāo)和的值.

)若點(diǎn)是第一象限內(nèi)的直線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)過程中,試求出的面積的函數(shù)關(guān)系式.

)在()的條件下:

①當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),的面積是

②在①成立的情況下,軸上是否存在一點(diǎn),使是等腰三角形.若存在,請寫出滿足條件的所有點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案