【題目】如圖是一個(gè)二次函數(shù)的圖象,頂點(diǎn)是原點(diǎn)O,且過點(diǎn)A(2,1),
(1)求出二次函數(shù)的表達(dá)式;
(2)我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn),請用整數(shù)n表示這條拋物線上所有的整點(diǎn)坐標(biāo).
(3)過y軸的正半軸上一點(diǎn)C(0,a)作AO的平行線交拋物線于點(diǎn)B,
①求出直線BC的函數(shù)表達(dá)式(用a表示);
②如果點(diǎn)B是整點(diǎn),求證:△OAB的面積是偶數(shù).
【答案】(1)y=x2;(2)拋物線上整點(diǎn)坐標(biāo)可表示為(2n,n2),其中n為整數(shù);(3)①y=x+a;②詳見解析.
【解析】
(1)可設(shè)拋物線的解析式為y=ax2,然后只需把點(diǎn)A的坐標(biāo)代入拋物線的解析式,就可解決問題;
(2)由拋物線的解析式可知,要使y是整數(shù),只需x是偶數(shù),故x可用2n表示(n為整數(shù)),由此就可解決問題;
(3)①可運(yùn)用待定系數(shù)法求出直線OA的解析式,然后根據(jù)兩直線平行一次項(xiàng)的系數(shù)相同,就可得到直線BC的函數(shù)表達(dá)式;②由于點(diǎn)B是整點(diǎn),點(diǎn)B的坐標(biāo)可表示為(2n,n2),代入直線BC的解析式,即可得到a的值(用n表示),然后根據(jù)平行等積法可得S△OAB=S△OAC=n(n-1),由于n與n-1是相鄰整數(shù),必然一奇一偶,因而n(n-1)是偶數(shù),問題得以解決.
(1)設(shè)拋物線的解析式為y=ax2,
把A(2,1)代入y=ax2,得1=4a,
解得a=,
∴二次函數(shù)的表達(dá)式為y=x2;
(2)拋物線上整點(diǎn)坐標(biāo)可表示為(2n,n2),其中n為整數(shù);
(3)①設(shè)直線OA的解析式為y=kx,
把點(diǎn)A(2,1)代入y=kx,得1=2k,
解得k=,
∴直線OA的解析式為y=x,
則過點(diǎn)C(0,a)與直線OA平行的直線的解析式為y=x+a;
②證明:∵點(diǎn)B是整點(diǎn),
∴點(diǎn)B的坐標(biāo)可表示為(2n,n2),其中n為整數(shù),
把B(2n,n2)代入y=x+c,得n2=n+c,
∴c=n2﹣n=n(n﹣1).
∵BC∥OA,
∴S△OAB=S△OAC=×c×2=c=n(n﹣1).
∵n為整數(shù),
∴n與n﹣1一奇一偶,
∴n(n﹣1)是偶數(shù),
∴△OAB的面積是偶數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)截面的邊緣為拋物線的拱橋橋洞,橋洞壁離水面AB的最大高度是2米,水面寬度AB為4米.把截面圖形放在如圖所示的平面直角坐標(biāo)系中.
(1)求這條拋物線對應(yīng)的函數(shù)表達(dá)式.
(2)若水面下降1米,求水面寬度增加了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且BE=BF,添加一個(gè)條件,仍不能證明四邊形BECF為正方形的是
A. BC=AC B. CF⊥BF C. BD=DF D. AC=BF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點(diǎn),以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點(diǎn)C,則圖中陰影部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是雙曲線y=﹣在第二象限分支上的一個(gè)動點(diǎn),連接AO并延長交另一分支于點(diǎn)B,以AB為底作等腰△ABC,且∠ACB=120°,點(diǎn)C在第一象限,隨著點(diǎn)A的運(yùn)動,點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y=上運(yùn)動,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑是4,點(diǎn)A,B,C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E為AB中點(diǎn),EF∥DC交BC于點(diǎn)F,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A(﹣6,0),C(0,2).將矩形OABC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),使點(diǎn)A恰好落在OB上的點(diǎn)A1處,則點(diǎn)B的對應(yīng)點(diǎn)B1的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象的頂點(diǎn)為A(2,-2),并且經(jīng)過B(1,0),C(3,0),求這條拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com