【題目】有兩個不透明的袋子,甲袋子里裝有標有兩個數(shù)字的張卡片,乙袋子里裝有標有三個數(shù)字的張卡片,兩個袋子里的卡片除標有的數(shù)字不同外,其大小質地完全相同.

1)從乙袋里任意抽出一張卡片,抽到標有數(shù)字的概率為   

2)求從甲、乙兩個袋子里各抽一張卡片,抽到標有兩個數(shù)字的卡片的概率.

【答案】1;(2)抽到標有兩個數(shù)字的卡片的概率是

【解析】

1)直接根據(jù)概率公式求解即可;

2)根據(jù)題意畫出樹狀圖得出所有等情況數(shù)和抽到標有3、6兩個數(shù)字的卡片的情況數(shù),然后根據(jù)概率公式即可得出答案.

1)乙袋子里裝有標有三個數(shù)字的卡片共3張,

則抽到標有數(shù)字的概率為

故答案為:;

2)根據(jù)題意畫圖如下:

共有種等情況數(shù),其中抽到標有兩個數(shù)字有種,

則抽到標有兩個數(shù)字的卡片的概率是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一面利用墻,用籬笆圍成的矩形花圃ABCD的面積為Sm2,垂直于墻的AB邊長為xm

1)若墻可利用的最大長度為8m,籬笆長為18m,花圃中間用一道籬笆隔成兩個小矩形.

①求Sx之間的函數(shù)關系式;

②如何圍矩形花圃ABCD的面積會最大,并求最大面積.

2)若墻可利用最大長度為50m,籬笆長99m,中間用n道籬笆隔成(n+1)小矩形,當這些小矩形都是正方形且x為正整數(shù)時,請直接寫出所有滿足條件的xn的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若整數(shù)a使關于x的分式方程2有整數(shù)解,且使關于x的不等式組至少有4個整數(shù)解,則滿足條件的所有整數(shù)a的和是(  )

A.14B.17C.20D.23

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)yax2bxca≠0,ab、c為常數(shù))的圖像經(jīng)過點A(-1,0)、B0,2).

1b (用含有a的代數(shù)式表示),c ;

2)點O是坐標原點,點C是該函數(shù)圖像的頂點,若△AOC的面積為1,則a ;

3)若x1時,y5.結合圖像,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2bxca≠0)中,函數(shù)y與自變量x的部分對應值如下表:

1)求該二次函數(shù)的表達式;

2)該二次函數(shù)圖像關于x軸對稱的圖像所對應的函數(shù)表達式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,是弧(異于、)上兩點,是弧上一動點,的角平分線交于點的平分線交于點.當點從點運動到點時,則、兩點的運動路徑長的比是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC是等腰直角三角形,∠BAC90°,將△ABC繞點C順時針方向旋轉得到△ABC,記旋轉角為α,當90°α180°時,作ADAC,垂足為D,ADBC交于點E

1)如圖1,當∠CAD15°時,作∠AEC的平分線EFBC于點F

①寫出旋轉角α的度數(shù);

②求證:EA′+ECEF

2)如圖2,在(1)的條件下,設P是直線AD上的一個動點,連接PA,PF,若AB,求線段PA+PF的最小值.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx2在第一象限內經(jīng)過的整數(shù)點(橫坐標、縱坐標都為整數(shù)的點)依次為A1,A2,A3An,將拋物線yx2沿直線Lyx向上平移,得到一系列拋物線,且滿足下列條件:①拋物線的頂點M1M2,M3Mn都在直線Lyx上;②拋物線依次經(jīng)過點A1,A2,A3An,則頂點M2020的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,AB=AC,∠BAC=60°,DBC邊上一點,(不與點BC)重合,將線段AD繞點A逆時針旋轉60°得到AE,連接EC,則∠ACE的度數(shù)是__________,線段AC,CDCE之間的數(shù)量關系是_______________.

(2)2,在△ABC中,AB=AC,∠BAC=90°,DBC邊上一點(不與點BC重合),將線段AD繞點A逆時針旋轉90°得到AE,連接EC,請寫出∠ACE的度數(shù)及線段AD,BD,CD之間的數(shù)量關系,并說明理由.

(3)如圖3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若點A滿足AB=AC,∠BAC=90°,請直接寫出線段AD的長度.

查看答案和解析>>

同步練習冊答案