當(dāng)x=-
13
時(shí),求代數(shù)式(3x-5)2-(4x-8)(4x+8)的值.
分析:先算乘方和乘法,再合并同類項(xiàng),最后代入求出即可.
解答:解:(3x-5)2-(4x-8)(4x+8)
=9x2-30x+25-16x2+64
=-7x2-30x+89,
當(dāng)x=-
1
3
時(shí),原式=-7×(-
1
3
2-30×(-
1
3
)+89=98
2
9
點(diǎn)評(píng):本題考查了整式的混合運(yùn)算和求值的應(yīng)用,主要考查學(xué)生的化簡(jiǎn)能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

有一個(gè)算式分子都是整數(shù),滿足
(  )
3
+
(  )
5
+
(  )
7
≈1.16,那么你能算出他們的分子依次是哪些數(shù)嗎?
在我們的教科書(shū)中選取了一些具體值并將它們代入要解的一元二次方程中,大致估計(jì)出一元二次方程解的范圍,再在這個(gè)范圍內(nèi)逐步加細(xì)賦值,進(jìn)而逐步估計(jì)出一元二次方程的近似解.下面介紹另外一種估計(jì)一元二次方程近似解的方法,以方程x2-3x-1=0為例,因?yàn)閤≠0,所以先將其變形為x=3+
1
x
,用3+
1
x
代替x,得x=3+
1
x
=3+
1
3+
1
x
.反復(fù)若干次用3+
1
x
代替x,就得到x=3+
1
3+
1
3+
1
3+
1
3+
1
x
形如上式右邊的式子稱為連分?jǐn)?shù).
可以猜想,隨著替代次數(shù)的不斷增加,右式最后的
1
x
對(duì)整個(gè)式子的值的影響將越來(lái)越小,因此可以根據(jù)需要,在適當(dāng)時(shí)候把
1
x
忽略不計(jì),例如,當(dāng)忽略x=3+
1
x
中的
1
x
時(shí),就得到x=3;當(dāng)忽略x=3+
1
3+
1
x
中的
1
x
時(shí),就得到x=3+
1
3
;如此等等,于是可以得到一系列分?jǐn)?shù);
3,3+
1
3
,3+
1
3+
1
3
,3+
1
3+
1
3
1
3
,…,即3,
10
3
=3.333…,
33
10
≈3.3.
109
33
=3.303 03…,….
可以發(fā)現(xiàn)它們?cè)絹?lái)越趨于穩(wěn)定,事實(shí)上,這些數(shù)越來(lái)越近似于方程x2-3x-1=0的正根,而且它的算法也很簡(jiǎn)單,就是以3為第一個(gè)近似值,然后不斷地求倒數(shù),再加3而已,在計(jì)算機(jī)技術(shù)極為發(fā)達(dá)的今天,只要編一個(gè)極為簡(jiǎn)單的程序,計(jì)算機(jī)就能很快幫你算出它的多個(gè)近似值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

精英家教網(wǎng)閱讀理解
九年級(jí)一班數(shù)學(xué)學(xué)習(xí)興趣小組在解決下列問(wèn)題中,發(fā)現(xiàn)該類問(wèn)題不僅可以應(yīng)用“三角形相似”知識(shí)解決問(wèn)題,還可以“建立直角坐標(biāo)系、應(yīng)用一次函數(shù)”解決問(wèn)題.
請(qǐng)先閱讀下列“建立直角坐標(biāo)系、應(yīng)用一次函數(shù)”解決問(wèn)題的方法,然后再應(yīng)用此方法解決后續(xù)問(wèn)題.
問(wèn)題:如圖(1),直立在點(diǎn)D處的標(biāo)桿CD長(zhǎng)3m,站立在點(diǎn)F處的觀察者從點(diǎn)E處看到標(biāo)桿頂C、旗桿頂A在一條直線上.已知BD=15m,F(xiàn)D=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標(biāo)系,則線段AE可看作一個(gè)一次函數(shù)的圖象.
由題意可得各點(diǎn)坐標(biāo)為:點(diǎn)E(0,1.6),C(2,3),B(17,0),且所求的高度就為點(diǎn)A的縱坐標(biāo).
設(shè)直線AE的函數(shù)關(guān)系式為y=kx+b.
把E(0,1.6),C(2,3)代入得
b=1.6
2k+b=3.
解得
k=0.7
b=1.6.
精英家教網(wǎng)
∴y=0.7x+1.6.
∴當(dāng)x=17時(shí),y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問(wèn)題
請(qǐng)應(yīng)用上述方法解決下列問(wèn)題:
如圖(3),河對(duì)岸有一路燈桿AB,在燈光下,小明在點(diǎn)D處測(cè)得自己的影長(zhǎng)DF=3m,BD=9m,沿BD方向到達(dá)點(diǎn)F處再測(cè)得自己的影長(zhǎng)FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算:(π-3)0-|
5
-3|+(-
1
3
-2-
5

(2)先化簡(jiǎn):
a2-b2
a2-ab
÷(a+
2ab+b2
a
)
,當(dāng)b=-1時(shí),請(qǐng)你為a任選一個(gè)適當(dāng)?shù)臄?shù)代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀理解
九年級(jí)一班數(shù)學(xué)學(xué)習(xí)興趣小組在解決下列問(wèn)題中,發(fā)現(xiàn)該類問(wèn)題不僅可以應(yīng)用“三角形相似”知識(shí)解決問(wèn)題,還可以“建立直角坐標(biāo)系、應(yīng)用一次函數(shù)”解決問(wèn)題.
請(qǐng)先閱讀下列“建立直角坐標(biāo)系、應(yīng)用一次函數(shù)”解決問(wèn)題的方法,然后再應(yīng)用此方法解決后續(xù)問(wèn)題.
問(wèn)題:如圖(1),直立在點(diǎn)D處的標(biāo)桿CD長(zhǎng)3m,站立在點(diǎn)F處的觀察者從點(diǎn)E處看到標(biāo)桿頂C、旗桿頂A在一條直線上.已知BD=15m,F(xiàn)D=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標(biāo)系,則線段AE可看作一個(gè)一次函數(shù)的圖象.
由題意可得各點(diǎn)坐標(biāo)為:點(diǎn)E(0,1.6),C(2,3),B(17,0),且所求的高度就為點(diǎn)A的縱坐標(biāo).
設(shè)直線AE的函數(shù)關(guān)系式為y=kx+b.
把E(0,1.6),C(2,3)代入得數(shù)學(xué)公式解得數(shù)學(xué)公式
∴y=0.7x+1.6.
∴當(dāng)x=17時(shí),y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問(wèn)題
請(qǐng)應(yīng)用上述方法解決下列問(wèn)題:
如圖(3),河對(duì)岸有一路燈桿AB,在燈光下,小明在點(diǎn)D處測(cè)得自己的影長(zhǎng)DF=3m,BD=9m,沿BD方向到達(dá)點(diǎn)F處再測(cè)得自己的影長(zhǎng)FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省南京市溧水縣中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

閱讀理解
九年級(jí)一班數(shù)學(xué)學(xué)習(xí)興趣小組在解決下列問(wèn)題中,發(fā)現(xiàn)該類問(wèn)題不僅可以應(yīng)用“三角形相似”知識(shí)解決問(wèn)題,還可以“建立直角坐標(biāo)系、應(yīng)用一次函數(shù)”解決問(wèn)題.
請(qǐng)先閱讀下列“建立直角坐標(biāo)系、應(yīng)用一次函數(shù)”解決問(wèn)題的方法,然后再應(yīng)用此方法解決后續(xù)問(wèn)題.
問(wèn)題:如圖(1),直立在點(diǎn)D處的標(biāo)桿CD長(zhǎng)3m,站立在點(diǎn)F處的觀察者從點(diǎn)E處看到標(biāo)桿頂C、旗桿頂A在一條直線上.已知BD=15m,F(xiàn)D=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標(biāo)系,則線段AE可看作一個(gè)一次函數(shù)的圖象.
由題意可得各點(diǎn)坐標(biāo)為:點(diǎn)E(0,1.6),C(2,3),B(17,0),且所求的高度就為點(diǎn)A的縱坐標(biāo).
設(shè)直線AE的函數(shù)關(guān)系式為y=kx+b.
把E(0,1.6),C(2,3)代入得解得
∴y=0.7x+1.6.
∴當(dāng)x=17時(shí),y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問(wèn)題
請(qǐng)應(yīng)用上述方法解決下列問(wèn)題:
如圖(3),河對(duì)岸有一路燈桿AB,在燈光下,小明在點(diǎn)D處測(cè)得自己的影長(zhǎng)DF=3m,BD=9m,沿BD方向到達(dá)點(diǎn)F處再測(cè)得自己的影長(zhǎng)FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案