7.如圖甲,點C將線段AB分成兩部分(AC>BC),如果$\frac{AC}{AB}$=$\frac{BC}{AC}$,那么稱點C為線段AB的黃金分割點.某數(shù)學興趣小組在進行課題研究時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成面積分別為S1,S2(S1>S2)的兩部分,如果$\frac{{S}_{1}}{S}$=$\frac{{S}_{2}}{{S}_{1}}$,那么稱直線l為該圖形的黃金分割線.
(1)如圖乙,在△ABC中,∠A=36°,AB=AC,∠ACB的平分線交AB于點D,請問點D是否是AB邊上的黃金分割點,并證明你的結論;
(2)若△ABC在(1)的條件下,如圖丙,請問直線CD是不是△ABC的黃金分割線,并證明你的結論;
(3)如圖丁,在Rt△ABC中,∠ACB=90°,D為斜邊AB上的一點,(不與A,B重合)過D作DE⊥BC于點E,連接AE,CD相交于點F,連接BF并延長,與DE,AC分別交于點G,H.請問直線BH是直角三角形ABC的黃金分割線嗎?并說明理由.

分析 (1)根據(jù)條件可以證明AD=CD=BC,由△BCD∽△BCA,得到$\frac{BC}{BD}=\frac{BD}{BC}$,則有$\frac{AD}{AB}=\frac{BD}{AD}$,所以點D是AB邊上的黃金分割點.
(2)只要證明△ACD:S△ABC=S△BCD:S△ACD,即可得出直線CD是△ABC的黃金分割線.
(3)只要證明AH=HC,則S△ABH=S△CBH,所以BH不是△ABC的黃金分割線.

解答 解:(1)點D是AB邊上的黃金分割點.理由如下:
∵AB=AC,∠A=36°,
∴∠B=∠ACB=72°,
∵CD是角平分線,
∴∠ACD=∠BCD=36°,
∴∠A=∠ACD,
∴AD=CD,
∵∠CDB=180°-∠B-∠BCD=72°,
∴∠CDB=∠B,
∴BC=CD,
∴BC=AD.
在△BCD與△BCA中,∠B=∠B,∠BCD=∠A=36°,
∴△BCD∽△BAC,
∴$\frac{BC}{AB}=\frac{BD}{BC}$,
∴$\frac{AD}{AB}=\frac{BD}{AD}$,
∴點D是AB邊上的黃金分割點.
(2)直線CD是△ABC的黃金分割線.理由如下:
設△ABC中,AB邊上的高為h,則S△ABC=$\frac{1}{2}$ AB•h,S△ACD=$\frac{1}{2}$ AD•h,S△BCD=$\frac{1}{2}$ BD•h,
∴S△ACD:S△ABC=AD:AB,S△BCD:S△ACD=BD:AD,
由(1)知,點D是AB邊上的黃金分割點,
∴$\frac{AD}{AB}=\frac{BD}{AD}$,
∴S△ACD:S△ABC=S△BCD:S△ACD,
∴CD是△ABC的黃金分割線.
(3)直線BH不是△ABC的黃金分割線.理由如下:
∵DE∥AC,
∴$\frac{DG}{HC}=\frac{FG}{FH}=\frac{GE}{AH}$,$\frac{DG}{AH}=\frac{BG}{BH}=\frac{EG}{HC}$,
∴$\frac{DG}{GE}=\frac{HC}{AH}$,$\frac{DG}{GE}=\frac{AH}{HC}$,
∴$\frac{HC}{AH}=\frac{AH}{HC}$,
∴AH2=HC2,
∴AH=HC,
∴S△BHA=S△BHC=$\frac{1}{2}$S△ABC
∴BH不是△ABC的黃金分割線.

點評 本題考查了相似三角形的判定與性質(zhì)、含36°角的等腰三角形、黃金分割、三角形中線的性質(zhì)等知識點,理解題中給出的黃金分割點、黃金分割線的概念是正確解題的基礎,用比例式證明線段相等是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

17.根據(jù)下列條件求二次函數(shù)的表達式:
(1)二次函數(shù)圖象經(jīng)過(0,-2),(1,2),(-1,3)三點;
(2)二次函數(shù)圖象與x軸交點的橫坐標分別是x1=-3,x2=1,且與y軸交點為(0,-2);
(3)二次函數(shù)圖象的頂點坐標(-3,$\frac{1}{2}$),且圖象過點(2,$\frac{11}{2}$).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

18.若最簡二次根式$\frac{3}{4}$$\sqrt{4{a}^{2}+1}$和2$\sqrt{6{a}^{2}-1}$是同類二次根式,則a的值是( 。
A.1B.0C.-1D.1或-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

15.一透明的敞口正方體容器ABCD-A′B′C′D′裝有一些 液體,棱AB始終在水平桌面上,容器底部的傾斜角為α (∠CBE=α,如圖1所示).
如圖1,液面剛好棱CD,并與棱BB′交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如 圖2所示.解決問題:
(1)CQ與BE的位置關系是平行,BQ的長是3dm;
(2)求液體的體積;(參考算法:直棱柱體積V液=底面積SBCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=$\frac{3}{4}$,tan37°=$\frac{3}{4}$)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

2.如圖,已知在矩形ABCD中,AB=2,BC=6,點E從點D出發(fā),沿DA方向以每秒1個單位的速度向點A運動,點F從點B出發(fā),沿射線AB以每秒3個單位的速度運動,當點E運動到點A時,E、F兩點停止運動.連結BD,過點E作EH⊥BD,垂足為H,連結EF,交BD于點G,交BC于點M,連結CF.給出下列結論:①△CDE∽△CBF;②∠DBC=∠EFC;③$\frac{DE}{AB}$=$\frac{HG}{EH}$;④GH的值為定值$\frac{{\sqrt{10}}}{5}$;⑤若GM=3EG,則tan∠FGB=$\frac{3}{4}$
上述結論中正確的個數(shù)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

12.己知拋物線y=x2+2mx-n與x軸沒有交點,則m+n的取值范圍是<$\frac{1}{4}$且m≠0,n≠0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

19.如圖,菱形ABCD中,AB=AC,點E,F(xiàn)在AB,BC上,AE=BF,AF,CE交于G,GD和AC交于H,則下列結論中成立的有( 。﹤.
①△ABF≌△CAE;②∠AGC=120°;③DG=AG+GC;④AD2=DH•DG;⑤△ABF≌△DAH.
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

16.在一個不透明的口袋中裝有若干個只有顏色不同的珠,如果口袋中只裝有2個黃球且摸出黃球的概率為$\frac{1}{2}$,那么袋中其他顏色的球共有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

17.將一張紙如圖所示折疊后壓平,點F在線段BC上,EF、GF為兩條折痕,若∠1=57°,∠2=20°,求∠3的度數(shù).

查看答案和解析>>

同步練習冊答案