如圖(1),在△ABC中,AB=BC,P為AB邊上一點,連接CP,以PA、PC為鄰邊作APCD,AC與PD相交于點E,已知∠ABC=∠AEP=(0°<<90°).
(1)求證: ∠EAP=∠EPA;
(2) APCD是否為矩形?請說明理由;
(3)如圖(2),F為BC中點,連接FP,將∠AEP繞點E順時針旋轉適當?shù)慕嵌?得到∠MEN(點M、N分別是∠MEN的兩邊與BA、FP延長線的交點).猜想線段EM與EN之間的數(shù)量關系,并證明你的結論.
證明:(1)在△ABC和△AEP中,
∠ABC=∠AEP,∠BAC=∠EAP,
∠ACB=∠APE,
在△ABC中,AB=BC.∠ACB=∠BAC,
∠EPA=∠EAP,
(2) APCD是矩形.
四邊形APCD是平行四邊形,
AC=2EA,PD=2EP.
由(1)知, ∠EPA=∠EAP.
EA=EP,進而AC=PD
APCD是矩形.
(3)EM=EN
EA=EP, ∠EPA=90° -
∠EAM=180°-∠EAP =180°-∠EPA= 180°-(90°-)=90°+
由(2)知, ∠CPB=90°,F是BC的中點, FP=FB,
∠FPB=∠ABC=,
∠EPN=∠EPA+∠APN=∠EPA+∠FPB=90° - +=90°+
∠EAM=∠EPN
∠AEP繞點E順時針旋轉適當?shù)慕嵌,得到∠MEN,
∠AEP-∠AEN =∠MEN-∠AEN,即∠MEA=∠NEP.
△EAM≌△EPN,
EM=EN.
【解析】(1)根據(jù)AB=BC可證∠CAB=∠ACB,則在△ABC與△AEP中,有兩個角對應相等,根據(jù)三角形內角和定理,即可證得;
(2)由(1)知∠EPA=∠EAP,則AC=DP,根據(jù)對角線相等的平行四邊形是矩形即可求證;
(3)可以證明△EAM≌△EPN,從而得到EM=EN.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com