【題目】在△ABC中,AB=AC.
(1)如圖1,如果∠BAD=30°,AD是BC上的高,AD=AE,則∠EDC= .
(2)如圖2,如果∠BAD=40°,AD是BC上的高,AD=AE,則∠EDC= .
(3)思考:通過以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關系?并給予證明.
【答案】
(1)15°
(2)20°
(3)解:∠BAD=2∠EDC(或∠EDC= ∠BAD);理由如下:
∠AED=∠CDE+∠C,∠ADC=∠B+∠BAD,
∵AD=AE,
∴∠AED=∠ADE,
∵AB=AC,
∴∠B=∠C,
∴∠B+∠BAD=∠EDC+∠C+∠CDE,
即∠BAD=2∠CDE
【解析】解:(1)∵在△ABC中,AB=AC,AD是BC上的高, ∴∠BAD=∠CAD,
∵∠BAD=30°,
∴∠BAD=∠CAD=30°,
∵AD=AE,
∴∠ADE=∠AED=75°,
∴∠EDC=15°;(2)∵在△ABC中,AB=AC,AD是BC上的高,
∴∠BAD=∠CAD,
∵∠BAD=40°,
∴∠BAD=∠CAD=40°,
∵AD=AE,
∴∠ADE=∠AED=70°,
∴∠EDC=20°;
所以答案是:15°;20°.
【考點精析】認真審題,首先需要了解等腰三角形的性質(等腰三角形的兩個底角相等(簡稱:等邊對等角)).
科目:初中數(shù)學 來源: 題型:
【題目】某酒店有三人間、雙人間客房若干,各種房型每天的收費標準如下:
普通(元/間) | 豪華(元/間) | |
三人間 | 160 | 400 |
雙人間 | 140 | 300 |
一個50人的旅游團到該酒店入住,選擇了一些三人普通間和雙人豪華間入住,且恰好住滿.已知該旅游團當日住宿費用共計4020元,問該旅游團入住的三人普通間和雙人豪華間各為幾間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】幾何知識可以解決生活中許多距離最短的問題.讓我們從書本一道習題入手進行知識探索.
(1)【回憶】
如圖,A、B是河l兩側的兩個村莊.現(xiàn)要在河l上修建一個抽水站C,使它到A、B兩村莊的距離的和最小,請在圖中畫出點C的位置,并說明理由.
(2)【探索】
如圖,A、B兩個村莊在一條筆直的馬路的兩端,村莊 C在馬路外,要在馬路上建一個垃圾站O,使得AO+BO+CO最小,請在圖中畫出點O的位置,并說明理由.
(3)如圖,A、B、C、D四個村莊,現(xiàn)建一個垃圾站O,使得AO+BO+CO+DO最小,請在圖中畫出點O的位置,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圖“書香八桂,閱讀圓夢”讀數(shù)活動中,某中學設置了書法、國學、誦讀、演講、征文四個比賽項目(每人只參加一個項目),九(2)班全班同學都參加了比賽,該班班長為了了解本班同學參加各項比賽的情況,收集整理數(shù)據(jù)后,繪制以下不完整的折線統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2),根據(jù)圖表中的信息解答下列各題:
(1)請求出九(2)全班人數(shù);
(2)請把折線統(tǒng)計圖補充完整;
(3)南南和寧寧參加了比賽,請用“列表法”或“畫樹狀圖法”求出他們參加的比賽項目相同的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】元旦節(jié)日期間,某商場為了促銷,每件夾克按成本價提高50%后標價,后因季節(jié)關系按標價的8折出售,每件以168元賣出,這批夾克每件的成本價是( )
A.80元
B.84元
C.140元
D.100元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中正確的是( 。
A.矩形的對角線一定垂直B.對角線互相垂直平分的四邊形是正方形
C.四個角都相等的四邊形是正方形D.菱形的對角線互相垂直平分
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平移變換不僅與幾何圖形有著密切的聯(lián)系,而且在一些特殊結構的漢字中,也有平移變換的現(xiàn)象,如:“日”“朋”“森”等,請你再寫兩個具有平移變換現(xiàn)象的漢字________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了提升初中學生學習數(shù)學的興趣,培養(yǎng)學生的創(chuàng)新精神,舉辦“玩轉數(shù)學”比賽.現(xiàn)有甲、乙、丙三個小組進入決賽,評委從研究報告、小組展示、答辯三個方面為個小組打,各項成績均按百分制記錄.甲、乙、丙三個小組各項得分如表:
(1)計算各小組的平均成績,并從高分到低分確定小組的排名順序;
(2)如果按照研究報告占40%,小組展示占30%,答辯占30%計算各小組的成績,哪個小組的成績最高?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com