【題目】如圖,在直角梯形OABC中,OA∥BC,A、B兩點(diǎn)的坐標(biāo)分別為A(13,0),B(11,12).動點(diǎn)P、Q分別從O、B兩點(diǎn)出發(fā),點(diǎn)P以每秒2個(gè)單位的速度沿x軸向終點(diǎn)A運(yùn)動,點(diǎn)Q以每秒1個(gè)單位的速度沿BC方向運(yùn)動;當(dāng)點(diǎn)P停止運(yùn)動時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動.線段PQ和OB相交于點(diǎn)D,過點(diǎn)D作DE∥x軸,交AB于點(diǎn)E,射線QE交x軸于點(diǎn)F.設(shè)動點(diǎn)P、Q運(yùn)動時(shí)間為t(單位:秒).
(1)當(dāng)t為何值時(shí),四邊形PABQ是平行四邊形.
(2)△PQF的面積是否發(fā)生變化?若變化,請求出△PQF的面積s關(guān)于時(shí)間t的函數(shù)關(guān)系式;若不變,請求出△PQF的面積.
(3)隨著P、Q兩點(diǎn)的運(yùn)動,△PQF的形狀也隨之發(fā)生了變化,試問何時(shí)會出現(xiàn)等腰△PQF?
【答案】(1)t=;(2)見解析;(3)見解析.
【解析】
(1)設(shè)OP=2t,QB=t,PA=13﹣2t,根據(jù)平行四邊形的性質(zhì)(對邊平行且相等)知,只需QB=PA,從而求得t;
(2)根據(jù)平行線分線段成比例求得=;然后由平行線OB∥DE∥PA分線段成比例求得;利用等量代換求得AF=2QB=2t,PF=OA=13;最后由三角形的面積公式求得△PQF的面積;
(3)由(2)知,PF=OA=13.分三種情況解答:①QP=FQ,作QG⊥x軸于G,則11﹣t﹣2t=2t+13﹣(11﹣t);②PQ=FP;③FQ=FP.
解:(1)設(shè)OP=2t,QB=t,PA=13﹣2t,要使四邊形PABQ為平行四邊形,則13﹣2t=t
∴.
(2)不變.
∵,
∴,
∵QB∥DE∥PA,
∴,
∴AF=2QB=2t,
∴PF=OA=13,
∴S△PQF=;
(3)由(2)知,PF=OA=13,
①QP=FQ,作QG⊥x軸于G,則11﹣t﹣2t=2t+13﹣(11﹣t),
∴t=;
②PQ=FP,
∴,
∴t=2或;
③FQ=FP,
∴,
∴t=1;
綜上,當(dāng)t=或1或2或時(shí),△PQF是等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)A,B,與軸交于點(diǎn)C。過點(diǎn)C作CD∥x軸,交拋物線的對稱軸于點(diǎn)D,連結(jié)BD。已知點(diǎn)A坐標(biāo)為(-1,0)。
(1)求該拋物線的解析式;
(2)求梯形COBD的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全球最大的關(guān)公塑像矗立在荊州古城東門外.如圖,張三同學(xué)在東門城墻上C處測得塑像底部B處的俯角為18°48′,測得塑像頂部A處的仰角為45°,點(diǎn)D在觀測點(diǎn)C正下方城墻底的地面上,若CD=10米,則此塑像的高AB約為 米(參考數(shù)據(jù):tan78°12′≈4.8).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) O 是△ABC 的邊 AB 上一點(diǎn),以 OB 為半徑的⊙O 交 BC 于點(diǎn) D,過點(diǎn) D 的切線交 AC 于點(diǎn) E,且 DE⊥AC.
(1)證明:AB=AC;
(2)設(shè) AB=cm,BC=2cm,當(dāng)點(diǎn) O 在 AB 上移動到使⊙O 與邊 AC 所在直線相切時(shí), 求⊙O 的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、C、D均在⊙O上,FB與⊙O相切于點(diǎn)B,AB與CF交于點(diǎn)G,OA⊥CF于點(diǎn)E,AC∥BF.
(1)求證:FG=FB.
(2)若tan∠F=,⊙O的半徑為4,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論中:①ac>0;②a+b+c<0;③4a﹣2b+c<0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正確的個(gè)數(shù)為( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著新農(nóng)村的建設(shè)和舊城的改造,我們的家園越來越美麗,小明家附近廣場中央新修了一個(gè)圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達(dá)到最高,水柱落地處離池中心米.
(1)請你建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并求出水柱拋物線的函數(shù)解析式;
(2)求出水柱的最大高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示雙曲線y=與y=﹣分別位于第三象限和第二象限,A是y軸上任意一點(diǎn),B是y=﹣上的點(diǎn),C是y=上的點(diǎn),線段BC⊥x軸于D,且4BD=3CD,則下列說法:①雙曲線y=在每個(gè)象限內(nèi),y隨x的增大而減;②若點(diǎn)B的橫坐標(biāo)為﹣3,則C點(diǎn)的坐標(biāo)為(﹣3,);③k=4;④△ABC的面積為定值7,正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等腰直角三角形,∠BAC=90°,BC=1,E為AB上任意一動點(diǎn),以CE為斜邊作等腰Rt△CDE,連結(jié)AD,下列說法:①∠BCE=∠ACD;②△ACD∽△BCE;③△AED∽△ECB;④AD∥BC;⑤四邊形ABCD的面積有最大值,且最大值為.其中正確的結(jié)論是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com