【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰Rt△ABC,使∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,設(shè)點(diǎn)C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

【答案】A
【解析】解:作AD∥x軸,作CD⊥AD于點(diǎn)D,若右圖所示,

由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,點(diǎn)C的縱坐標(biāo)是y,

∵AD∥x軸,

∴∠DAO+∠AOD=180°,

∴∠DAO=90°,

∴∠OAB+∠BAD=∠BAD+∠DAC=90°,

∴∠OAB=∠DAC,

在△OAB和△DAC中,

,

∴△OAB≌△DAC(AAS),

∴OB=CD,

∴CD=x,

∵點(diǎn)C到x軸的距離為y,點(diǎn)D到x軸的距離等于點(diǎn)A到x的距離1,

∴y=x+1(x>0).

故答案為:A.

過(guò)點(diǎn)C作y軸垂線,構(gòu)造出全等三角形,尤其性質(zhì)對(duì)應(yīng)邊轉(zhuǎn)化為坐標(biāo)求出y、x的函數(shù)關(guān)系是y=x+1(x>0),圖像是一條射線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一袋中裝有形狀大小都相同的四個(gè)小球,每個(gè)小球上各標(biāo)有一個(gè)數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個(gè)小球,對(duì)應(yīng)的數(shù)字作為一個(gè)兩位數(shù)的個(gè)位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個(gè)小球,對(duì)應(yīng)的數(shù)字作為這個(gè)兩位數(shù)的十位數(shù).
(1)寫(xiě)出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個(gè),求其算術(shù)平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2)、B(4,0)、C(4,﹣4).
①請(qǐng)畫(huà)出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
②以點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的 ,得到△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,平分,∠B=450,∠C=730

(1) 求的度數(shù);

(2) 如圖②,若把“”變成“點(diǎn)FDA的延長(zhǎng)線上,”,其它條件不變,求 的度數(shù);

(3) 如圖③,若把“”變成“平分”,其它條件不變,的大小是否變化,并請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A2,3),點(diǎn)B﹣21),在x軸上存在點(diǎn)PA,B兩點(diǎn)的距離之和最小,則P點(diǎn)的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(6,0),又點(diǎn)B(x,y)在第一象限內(nèi),且xy=8,設(shè)△AOB的面積是S.

(1)寫(xiě)出Sx之間的函數(shù)解析式,并求出x的取值范圍;

(2)畫(huà)出(1)中所求函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】趙爽弦圖是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形,如圖所示,若這四個(gè)全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點(diǎn)B1、C1、C2、C3、…、Cn在直線y=﹣ x+ 上,頂點(diǎn)D1、D2、D3、…、Dn在x軸上,則第n個(gè)陰影小正方形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,∠221,點(diǎn)Cx軸正半軸上的一動(dòng)點(diǎn).

1)求∠1的度數(shù);

2)若OFACOEAB,求證:∠EOF=∠EAF;

3)點(diǎn)C在運(yùn)動(dòng)中,若∠1=∠ACO,試判斷ABAC有怎樣的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,斜坡AP的坡度為1:2.4,坡長(zhǎng)AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測(cè)得該塔的塔頂B的仰角為45°,在坡頂A處測(cè)得該塔的塔頂B的仰角為76°.求:

(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

同步練習(xí)冊(cè)答案