如圖,有一根高為16米的電線桿BC在A處斷裂,電線桿頂部C落在地面離電線桿底部B點8米遠的地方,求電線桿的斷裂處A離地面的距離.

答案:
解析:

  解  不妨設(shè)AB=x米,由于BA+AC=16米,則AC=(16-x)米.

  在Rt△ABC中,由勾股定理得

  AB2+BC2=AC2,

  即  x2+82=(16-x)2

  解這個方程得  x2+64=256-32x+x2

  即  32x=192,

  所以  x=6.

  答:電線桿的斷裂處A離地面的距離為6米.

  分析  本題即是已知BA+AC=16米,BC=8米,求AB.不妨引入未知數(shù),利用勾股定理列方程解答.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,等腰△ABC中,AC=BC,CD是底邊上的高,∠A=30°.
(1)CD與AB有什么數(shù)量關(guān)系?請說明理由;
(2)過點D作DD1⊥BC,垂足為D1;D1D2⊥AB,垂足為D2;D2D3⊥BC,垂足為D3;D3D4⊥AB,垂足為D4;…;D2n+1D2n⊥AB,垂足為D2n;D2n+1D2n⊥BC,垂足為D2n+1(n為非零自然數(shù)).若CD=a,請用含a的代數(shù)式表示下表中線段的長度(請將結(jié)果直接填入表中);
線段
 
D1D2 D3D4   D5D6 D2n-1 D2n 
長度   
3
4
a
     
(3)某工業(yè)園區(qū)一個車間的人字形屋架為(2)中的圖形,跨度AB為16米,CD是該屋架的主柱,DD1,D1D2,D2D3…D2n+1D2n為輔柱.若整個屋架有18根輔柱,則最短一根輔柱的長度約為多少米?(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年滬科版初中數(shù)學(xué)八年級下17.1勾股定理練習(xí)卷(解析版) 題型:解答題

有一根高為16米的電線桿在A處斷裂,如圖所示,電線桿頂部C落到離電線桿底部B8m遠的地方,求電線桿的斷裂處A離地面有多高?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第1章《解直角三角形》中考題集(32):1.3 解直角三角形(解析版) 題型:解答題

如圖,等腰△ABC中,AC=BC,CD是底邊上的高,∠A=30°.
(1)CD與AB有什么數(shù)量關(guān)系?請說明理由;
(2)過點D作DD1⊥BC,垂足為D1;D1D2⊥AB,垂足為D2;D2D3⊥BC,垂足為D3;D3D4⊥AB,垂足為D4;…;D2n+1D2n⊥AB,垂足為D2n;D2n+1D2n⊥BC,垂足為D2n+1(n為非零自然數(shù)).若CD=a,請用含a的代數(shù)式表示下表中線段的長度(請將結(jié)果直接填入表中);
線段
 
D1D2D3D4  D5D6D2n-1 D2n 
長度     
(3)某工業(yè)園區(qū)一個車間的人字形屋架為(2)中的圖形,跨度AB為16米,CD是該屋架的主柱,DD1,D1D2,D2D3…D2n+1D2n為輔柱.若整個屋架有18根輔柱,則最短一根輔柱的長度約為多少米?(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第25章《解直角三角形》中考題集(28):25.3 解直角三角形(解析版) 題型:解答題

如圖,等腰△ABC中,AC=BC,CD是底邊上的高,∠A=30°.
(1)CD與AB有什么數(shù)量關(guān)系?請說明理由;
(2)過點D作DD1⊥BC,垂足為D1;D1D2⊥AB,垂足為D2;D2D3⊥BC,垂足為D3;D3D4⊥AB,垂足為D4;…;D2n+1D2n⊥AB,垂足為D2n;D2n+1D2n⊥BC,垂足為D2n+1(n為非零自然數(shù)).若CD=a,請用含a的代數(shù)式表示下表中線段的長度(請將結(jié)果直接填入表中);
線段
 
D1D2D3D4  D5D6D2n-1 D2n 
長度     
(3)某工業(yè)園區(qū)一個車間的人字形屋架為(2)中的圖形,跨度AB為16米,CD是該屋架的主柱,DD1,D1D2,D2D3…D2n+1D2n為輔柱.若整個屋架有18根輔柱,則最短一根輔柱的長度約為多少米?(結(jié)果精確到0.1米)

查看答案和解析>>

同步練習(xí)冊答案