【題目】如圖,△ABD內(nèi)接于⊙O,AB為⊙O的直徑,C為弧AD的中點(diǎn),CH⊥AB于點(diǎn)E,交AD于點(diǎn)P,交⊙O于點(diǎn)H,連接DH,連接BC交AD于點(diǎn)F.下列結(jié)論中:①DH⊥CB;②CP=PF;③CH=AD;④APAD=CFCB;⑤若⊙O的半徑為5,AF=,則CH=.正確的有( 。
A.2個B.3個C.4個D.5個
【答案】C
【解析】
根據(jù)已知條件得到∠H=∠ABC,∠C+∠ABC=90°,于是得到∠H+∠C=90°,求得DH⊥BC,故①正確;根據(jù),得到∠CBD=∠ABC,根據(jù)圓周角定理得到∠ADB=90°,求得∠BFD+∠DBF=90°,得到∠C=∠CFP,于是求得CP=PF,故②正確;根據(jù)垂徑定理得到,求得,于是得到CH=AD;故③正確;連接AC,BH,得到∠ACH=∠CAD,求得AP=CP,根據(jù)垂徑定理得到,求得BC=BH,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
解:∵C為弧AD的中點(diǎn),
∴
∴∠H=∠ABC,
∵CH⊥AB,
∴∠C+∠ABC=90°,
∴∠H+∠C=90°,
∴DH⊥BC,故①正確;
∵,
∴∠CBD=∠ABC,
∵AB為⊙O的直徑,
∴∠ADB=90°,
∴∠BFD+∠DBF=90°,
∴∠C=∠BFD,
∵∠CFP=∠DFB,
∴∠C=∠CFP,
∴CP=PF,故②正確;
∵AB為⊙O的直徑,C為弧AD的中點(diǎn),CH⊥AB,
∴,
∴,
∴CH=AD;故③正確;
連接AC,BH,
則∠ACH=∠CAD,
∴AP=CP,
∵CH⊥AB,
∴,
∴BC=BH,
∴∠BCH=∠BHC,
∴∠CFP=∠BHC,
∵∠PCF=∠BCH,
∴△CPF∽△CBH,
∴,
∴PCCH=CFCB,
∵PC=AP,CH=AD,
∴APAD=CFCB,故④正確;
∵∠CAF=∠ABC,
又∵∠ACF=∠BCA,
∴△CAF∽△CBA,
∴,
又∵AB=10,
∴AC=6,BC=8.
根據(jù)直角三角形的面積公式,得:ACBC=ABCE,
∴6×8=10CE.
∴CE=
又∵CH=HE,
∴CH=2CE=.故⑤錯誤,
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC 是等邊三角形,點(diǎn) P 在△ABC 內(nèi),PA=2,將△PAB 繞點(diǎn) A 逆時針旋轉(zhuǎn)得到△P1AC,則 P1P 的長等于( )
A. 2 B. C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在實(shí)際問題中往往需要求得方程的近似解,這個時候,我們通常利用函數(shù)的圖象來完成.如,求方程x2﹣2x﹣2=0的實(shí)數(shù)根的近似解,觀察函數(shù)y=x2﹣2x﹣2的圖象,發(fā)現(xiàn),當(dāng)自變量為2時,函數(shù)值小于0(點(diǎn)(2,﹣2)在x軸下方),當(dāng)自變量為3時,函數(shù)值大于0(點(diǎn)(3,1)在x軸上方).因?yàn)閽佄锞y=x2﹣2x﹣2是一條連續(xù)不斷的曲線,所以拋物線y=x2﹣2x﹣2在2<x<3這一段經(jīng)過x軸,也就是說,當(dāng)x取2、3之間的某個值時,函數(shù)值為0,即方程x2﹣2x﹣2=0在2、3之間有根.進(jìn)一步,我們?nèi)?/span>2和3的平均數(shù)2.5,計(jì)算可知,對應(yīng)的數(shù)值為﹣0.75,與自變量為3的函數(shù)值異號,所以這個根在2.5與3之間任意一個數(shù)作為近似解,該近似解與真實(shí)值的差都不會大于3﹣2.5=0.5.重復(fù)以上操作,隨著操作次數(shù)增加,根的近似值越來越接近真實(shí)值.用以上方法求得方程x2﹣2x﹣2=0的小于0的解,并且使得所求的近似解與真實(shí)值的差不超過0.3,該近似解為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示.
(1)求這個二次函數(shù)的表達(dá)式;
(2)當(dāng)﹣1≤x≤4時,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,網(wǎng)格中每個小正方形的邊長為1,點(diǎn)A,B均在格點(diǎn)上.則線段AB的長為 .請借助網(wǎng)格,僅用無刻度的直尺在AB上作出點(diǎn)P,使AP=.
(2)⊙O為△ABC的外接圓,請僅用無刻度的直尺,依下列條件分別在圖2,圖3的圓中畫出一條弦,使這條弦將△ABC分成面積相等的兩部分(保留作圖痕跡,不寫作法,請下結(jié)論注明你所畫的弦).
①如圖2,AC=BC;
②如圖3,P為圓上一點(diǎn),直線l⊥OP且l∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)的坐標(biāo)分別是A(-3,2),B(-1,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;
(2)平移△ABC,若A的對應(yīng)點(diǎn)A2的坐標(biāo)為(-5,-2),畫出平移后的△A2B2C2;
(3)若將△A2B2C2繞某一點(diǎn)旋轉(zhuǎn)可以得到△A1B1C,請直接寫出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)坐標(biāo)分別為O(0,0),A(12,0),B(8,6),C(0,6).動點(diǎn)P從點(diǎn)O出發(fā),以每秒3個單位長度的速度沿邊向OA終點(diǎn)A運(yùn)動;動點(diǎn)Q從點(diǎn)B同時出發(fā),以每秒2個單位長度的速度沿邊BC向終點(diǎn)C運(yùn)動.設(shè)運(yùn)動的時間為t秒,PQ=y.
(1)直接寫出y關(guān)于t的函數(shù)解析式及t的取值范圍: ;
(2)當(dāng)PQ=3時,求t的值;
(3)連接OB交PQ于點(diǎn)D,若雙曲線經(jīng)過點(diǎn)D,問k的值是否變化?若不變化,請求出k的值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接疫情徹底結(jié)束后的購物高峰,某運(yùn)動品牌專賣店準(zhǔn)備購進(jìn)甲、乙兩種運(yùn)動鞋.其中甲、乙兩種運(yùn)動鞋的進(jìn)價和售價如下表:
運(yùn)動鞋價格 | 甲 | 乙 |
進(jìn)價(元/雙) | m | m﹣20 |
售價(元/雙) | 240 | 160 |
已知:用3000元購進(jìn)甲種運(yùn)動鞋的數(shù)量與用2400元購進(jìn)乙種運(yùn)動鞋的數(shù)量相同.
(1)求m的值;
(2)要使購進(jìn)的甲、乙兩種運(yùn)動鞋共200雙的總利潤(利潤=售價﹣進(jìn)價)不少于21700元,且甲種運(yùn)動鞋的數(shù)量不超過100雙,問該專賣店共有幾種進(jìn)貨方案?
(3)在(2)的條件下,專賣店準(zhǔn)備對甲種運(yùn)動鞋進(jìn)行優(yōu)惠促銷活動,決定對甲種運(yùn)動鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運(yùn)動鞋價格不變.那么該專賣店要獲得最大利潤應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)與一次函數(shù)的圖象交于兩點(diǎn)A(1,3)、B(n,-1).
(1)求這兩個函數(shù)的解析式;
(2)觀察圖象,請直接寫出不等式的解集;
(3)點(diǎn)C為x軸正半軸上一點(diǎn),連接AO、AC,且AO=AC,求⊿AOC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com