精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中點,AD⊥AE.

(1)求證:AC2=CDBC;
(2)過E作EG⊥AB,并延長EG至點K,使EK=EB.
①若點H是點D關于AC的對稱點,點F為AC的中點,求證:FH⊥GH;
②若∠B=30°,求證:四邊形AKEC是菱形.

【答案】
(1)

證明:∵AC平分∠BCD,

∴∠DCA=∠ACB.

又∵AC⊥AB,AD⊥AE,

∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°,

∴∠DAC=∠EAB.

又∵E是BC的中點,

∴AE=BE,

∴∠EAB=∠ABC,

∴∠DAC=∠ABC,

∴△ACD∽△BCA,

∴AC2=CDBC;


(2)

證明:

①證明:連接AH.

∵∠ADC=∠BAC=90°,點H、D關于AC對稱,

∴AH⊥BC.

∵EG⊥AB,AE=BE,

∴點G是AB的中點,

∴HG=AG,

∴∠GAH=GHA.

∵點F為AC的中點,

∴AF=FH,

∴∠HAF=∠FHA,

∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°,

∴FH⊥GH;

②∵EK⊥AB,AC⊥AB,

∴EK∥AC,

又∵∠B=30°,

∴AC= BC=EB=EC.

又EK=EB,

∴EK=AC,即四邊形AKEC是平行四邊形。

∵EC=EB=EK

∴四邊形AKEC是菱形.


【解析】(1)欲證明AC2=CDBC,只需推知△ACD∽△BCA即可;(2)①連接AH.構建直角△AHC,利用直角三角形斜邊上的中線等于斜邊的一半、等腰對等角以及等量代換得到:∠FHG=∠CAB=90°,即FH⊥GH;
②利用“在直角三角形中,30度角所對的直角邊等于斜邊的一半”、“直角三角形斜邊上的中線等于斜邊的一半”推知四邊形AKEC的四條邊都相等,則四邊形AKEC是菱形.本題考查了四邊形綜合題,需要熟練掌握相似三角形的判定與性質,“直角三角形斜邊上的中線等于斜邊的一半”、“在直角三角形中,30度角所對的直角邊等于斜邊的一半”以及菱形的判定才能解答該題,難度較大.
【考點精析】根據題目的已知條件,利用直角三角形斜邊上的中線和相似三角形的判定與性質的相關知識可以得到問題的答案,需要掌握直角三角形斜邊上的中線等于斜邊的一半;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】定義:有三個內角相等的四邊形叫三等角四邊形.

(1)三等角四邊形ABCD中,∠A=∠B=∠C,求∠A的取值范圍;
(2)如圖,折疊平行四邊形紙片DEBF,使頂點E,F分別落在邊BE,BF上的點A,C處,折痕分別為DG,DH.求證:四邊形ABCD是三等角四邊形.
(3)三等角四邊形ABCD中,∠A=∠B=∠C,若CB=CD=4,則當AD的長為何值時,AB的長最大,其最大值是多少?并求此時對角線AC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法正確的是(  )
A.擲一枚質地均勻的正方體骰子,骰子停止轉動后,5點朝上是必然事件
B.審查書稿中有哪些學科性錯誤適合用抽樣調查法
C.甲乙兩人在相同條件下各射擊10次,他們的成績的平均數相同,方差分別是S2=0.4,S2=0.6,則甲的射擊成績較穩(wěn)定
D.擲兩枚質地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,輪船沿正南方向以30海里/時的速度勻速航行,在M處觀測到燈塔P在西偏南68°方向上,航行2小時后到達N處,觀測燈塔P在西偏南46°方向上,若該船繼續(xù)向南航行至離燈塔最近位置,則此時輪船離燈塔的距離約為(由科學計算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)(  )

A.22.48
B.41.68
C.43.16
D.55.63

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解數學思想作文對學習幫助有多大?研究員隨機抽取了一定數量的高校大一學生進行了問卷調查,并將調查得到的數據用下面的扇形圖和如表來表示(圖、表都沒制作完成).

選項

幫助很大

幫助較大

幫助不大

幾乎沒有幫助

人數

a

540

270

b

根據上面圖、表提供的信息,解決下列問題:

(1)這次共有多少名學生參與了問卷調查?

(2)求a、b的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,請你添加一個適當的條件: , 使△AEH≌△CEB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某社區(qū)青年志愿者小分隊年齡情況如下表所示:

年齡(歲)

18

19

20

21

22

人數

2

5

2

2

1

則這12名隊員年齡的眾數、中位數分別是( 。
A.2,20歲
B.2,19歲
C.19歲,20歲
D.19歲,19歲

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,分別以直角三角形三邊為邊向外作等邊三角形,面積分別為S1、S2、S3;如圖2,分別以直角三角形三個頂點為圓心,三邊長為半徑向外作圓心角相等的扇形,面積分別為S4、S5、S6 . 其中S1=16,S2=45,S5=11,S6=14,則S3+S4=( 。
A.86
B.64
C.54
D.48

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABO中,已知點 、B(﹣1,﹣1)、O(0,0),正比例函數y=﹣x圖象是直線l,直線AC∥x軸交直線l與點C.
(1)C點的坐標為;
(2)以點O為旋轉中心,將△ABO順時針旋轉角α(90°≤α<180°),使得點B落在直線l上的對應點為B′,點A的對應點為A′,得到△A′OB′. ①∠α=;②畫出△A′OB′.
(3)寫出所有滿足△DOC∽△AOB的點D的坐標.

查看答案和解析>>

同步練習冊答案