【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。

【答案】
(1)證明:∵菱形ABCD,

∴AB=CD,AB∥CD,

又∵BE=AB,

∴BE=CD,BE∥CD,

∴四邊形BECD是平行四邊形,

∴BD=EC


(2)解:∵平行四邊形BECD,

∴BD∥CE,

∴∠ABO=∠E=50°,

又∵菱形ABCD,

∴AC丄BD,

∴∠BAO=90°﹣∠ABO=40°


【解析】(1)根據(jù)菱形的對邊平行且相等可得AB=CD,AB∥CD,然后證明得到BE=CD,BE∥CD,從而證明四邊形BECD是平行四邊形,再根據(jù)平行四邊形的對邊相等即可得證;(2)根據(jù)兩直線平行,同位角相等求出∠ABO的度數(shù),再根據(jù)菱形的對角線互相垂直可得AC⊥BD,然后根據(jù)直角三角形兩銳角互余計算即可得解.
【考點精析】關(guān)于本題考查的平行四邊形的判定與性質(zhì)和菱形的性質(zhì),需要了解若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算a5·(a)3a8的結(jié)果是( )

A. 0B. 2a8C. a16D. 2a16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)計劃購買A、B兩種樹苗共100棵,已知A種樹苗每棵30元,B種樹苗每棵90元.

(1)設(shè)購買A種樹苗x棵,購買A、B兩種樹苗的總費用為y元,請你寫出y與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);

(2)如果購買A、B兩種樹苗的總費用不超過7560元,且B種樹苗的棵數(shù)不少于A種樹苗棵數(shù)的3倍,那么有哪幾種購買樹苗的方案?

(3)從節(jié)約開支的角度考慮,你認(rèn)為采用哪種方案更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠通過改進(jìn)工藝降低了某種產(chǎn)品的成本,兩個月內(nèi)從每件產(chǎn)品250元降低到每件160元,則平均每月降低的百分率為(

A.10B.5C.15D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB為直徑,DE為圓上兩點,C為圓外一點,且∠E+∠C=90°

1)求證:BC⊙O的切線.

2)若sinA=,BC=6,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某市2017年企業(yè)用水量x(噸)與該月應(yīng)交的水費y(元)之間的函數(shù)關(guān)系如圖所示.
(1)當(dāng)0≤x≤50時,求y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)50≤x≤60時,求y關(guān)于x的函數(shù)關(guān)系式;
(3)若某企業(yè)3月份用水量為40噸,求該企業(yè)3月份應(yīng)交的水費;
(4)若某企業(yè)5月份用水量為620噸,求該企業(yè)在5月份的用水量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹落實健康第一的指導(dǎo)思想,促進(jìn)學(xué)生全面發(fā)展,國家每年都要對中學(xué)生進(jìn)行一次體能測試,測試結(jié)果分優(yōu)秀、良好、及格、不及格四個等級,某學(xué)校從七年級學(xué)生中隨機抽取部分學(xué)生的體能測試結(jié)果進(jìn)行分析,并根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖,請根據(jù)這兩幅統(tǒng)計圖中的信息回答下列問題

1)本次抽樣調(diào)查共抽取多少名學(xué)生?

2)補全條形統(tǒng)計圖.

3)在扇形統(tǒng)計圖中,求測試結(jié)果為良好等級所對應(yīng)圓心角的度數(shù).

4)若該學(xué)校七年級共有600名學(xué)生,請你估計該學(xué)校七年級學(xué)生中測試結(jié)果為不及格等級的學(xué)生有多少名?

5)請你對不及格等級的同學(xué)提一個友善的建議(一句話即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的CD邊長作等邊△DCE,AC和BE相交于點F,連接DF.求∠AFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yx24x3的頂點縱坐標(biāo)是_____

查看答案和解析>>

同步練習(xí)冊答案