【題目】某房產(chǎn)開(kāi)發(fā)公司對(duì)一幢住宅樓的標(biāo)價(jià)是:基價(jià)2580/平方米,樓層差價(jià)如下表:

老王買(mǎi)了面積為80平方米的三樓.

1)問(wèn)老王花了多少錢(qián)?

2)若他用同樣多的錢(qián)去買(mǎi)六樓,請(qǐng)你幫老王算一算他可以多買(mǎi)多少平方米的房子?

【答案】1243552元;(224.9平方米

【解析】

1)由題意知三樓每平方米的價(jià)格為:25801+18%)元,所以要買(mǎi)80平方米應(yīng)花:80×25801+18%)元,只要設(shè)老王花了x元,列出等量關(guān)系求解即可;
2)由題意知買(mǎi)六樓每平米的價(jià)格為:25801-10%)元,設(shè)用同樣的錢(qián)買(mǎi)老王可以買(mǎi)y平方米,則多買(mǎi)了y-80平方米,由所用的錢(qián)相等列出等量關(guān)系求解.

1)設(shè)老王花了x元,

由題意得:x80×2580×1+18%)=243552(元)

即:老王花了243552元.

2)若他用同樣多的錢(qián)去買(mǎi)六樓,設(shè)老王能買(mǎi)y平米,

由題意得:243552y×2580×110%),

y≈104.9平方米.

所以,若他用同樣多的錢(qián)去買(mǎi)六樓,老王可以多買(mǎi)104.98024.9平方米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義,如圖1,點(diǎn)M,N把線段AB分割成AM,MNBN,若以AM,MN,BN為邊的三角形是一個(gè)直角三角形,則稱(chēng)點(diǎn)M,N為線段AB的勾股分割點(diǎn).

(1)已知點(diǎn)M,N是線段AB的勾股分割點(diǎn),若AM=3,MN=5,求BN的長(zhǎng)

(2)如圖2,在RtABC中,AC=BC,點(diǎn)M,N在斜邊AB上,∠MCN=45°,求證:點(diǎn)M,N是線段AB的勾股分割點(diǎn);陽(yáng)陽(yáng)在解決第(2)小題時(shí)遇到了困難,陳老師對(duì)陽(yáng)陽(yáng)說(shuō):要證明勾股分割點(diǎn),則需設(shè)法構(gòu)造直角三角形,你可以把CBN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90度試試,請(qǐng)根據(jù)陳老師的提示完成證明過(guò)程.

(3)如圖3,C是線段AB上的一定點(diǎn),請(qǐng)?jiān)?/span>BC上畫(huà)一點(diǎn)D,使C、D是線段AB的勾股分割點(diǎn)

(要求:完成尺規(guī)作圖,保留作圖痕跡,并在右側(cè)分步寫(xiě)出作圖步驟)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形ABCD中,∠DAB被對(duì)角線AC平分,且AC2=ABAD.我們稱(chēng)該四邊形為“可分四邊形”,∠DAB稱(chēng)為“可分角”.

(1)如圖2,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(2)如圖3,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則求∠DAB的度數(shù);
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,則△DAB的最大面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】看圖填空:

(1)1和∠3是直線________被直線____所截得的______;

(2)1和∠4是直線_________被直線____所截得的______;

(3)B和∠2是直線_________被直線_____所截得的______;

(4)B和∠4是直線_________被直線_____所截得的_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABFAE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C,D,E將線段AB分成2:3:4:5四部分,M,P,Q,N分別是AC,CD,DE,EB的中點(diǎn),且MN=21,求線段PQ的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,經(jīng)過(guò)點(diǎn)A(0,6)的拋物線y= x2+bx+c與x軸相交于B(﹣2,0)、C兩點(diǎn).

(1)求此拋物線的函數(shù)關(guān)系式和頂點(diǎn)D的坐標(biāo);
(2)求直線AC所對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)將(1)中求得的拋物線向左平移1個(gè)單位長(zhǎng)度,再向上平移m(m>0)個(gè)單位長(zhǎng)度得到新拋物線y1 , 若新拋物線y1的頂點(diǎn)P在△ABC內(nèi),求m的取值范圍;
(4)在(3)的結(jié)論下,新拋物線y1上是否存在點(diǎn)Q,使得△QAB是以AB為底邊的等腰三角形,請(qǐng)分析所有可能出現(xiàn)的情況,并直接寫(xiě)出相對(duì)應(yīng)的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,A=70°B=50°,點(diǎn)D,E分別為AB,AC上的點(diǎn),沿DE折疊,使點(diǎn)A落在BC邊上點(diǎn)F處,若EFC為直角三角形,則BDF的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,然后解決問(wèn)題:和、差、倍、分等問(wèn)題中有著廣泛的應(yīng)用,截長(zhǎng)法與補(bǔ)短法在證明線段的和、差、倍、分等問(wèn)題中有著廣泛的應(yīng)用.具體的做法是在某條線段上截取一條線段等于某特定線段,或?qū)⒛硹l線段延長(zhǎng),使之與某特定線段相等,再利用全等三角形的性質(zhì)等有關(guān)知識(shí)來(lái)解決數(shù)學(xué)問(wèn)題.

(1)如圖1,在ABC中,若 AB=12,AC=8,求 BC邊上的中線AD的取值范圍.

解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使 DE=AD,再連接 BE,把AB、AC、2AD集中在ABE中.利用三角形三邊的關(guān)系即可判斷中線 AD的取值范圍是_______.

問(wèn)題解決:

(2)如圖2,在四邊形ABCD中,AB=AD,ABC+ADC=180°,E、F分別是邊BC,CD上的兩點(diǎn),且EAF=BAD,求證:BE+DF=EF.

問(wèn)題拓展:

(3)如圖3,在ABC中,ACB=90°,CAB=60°,點(diǎn)DABC 外角平分線上一點(diǎn),DEAC CA延長(zhǎng)線于點(diǎn)E,F(xiàn) AC上一點(diǎn),且DF=DB.

求證:AC﹣AE=AF.

查看答案和解析>>

同步練習(xí)冊(cè)答案