如圖,直線l1與直線l2相交于點(diǎn)A(-1,-1),直線l1是y=-x-2,直線l2是y=2x+1,從圖象上觀察,當(dāng)x
>-1
>-1
時,l1的圖象在l2的圖象下方.
分析:此題可以直接從圖象上看出答案.
解答:解:∵l1,l2相交于(-1,-1),
∴從圖象上可以直接看出:當(dāng)x>-1時,l1的圖象在l2的圖象下方.
故答案為:>-1.
點(diǎn)評:此題主要考查了兩條直線相交問題,以交點(diǎn)為分界,可以直接得到答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,直線l1與直線l2相交,∠α=60°,點(diǎn)P在∠α內(nèi)(不在l1,l2上).小明用下面的方法作P的對稱點(diǎn):先以l1為對稱軸作點(diǎn)P關(guān)于l1的對稱點(diǎn)P1,再以l2為對稱軸作P1關(guān)于l2的對稱點(diǎn)P2,然后再以l1為對稱軸作P2關(guān)于l1的對稱點(diǎn)P3,以l2為對稱軸作P3關(guān)于l2的對稱點(diǎn)P4,…,如此繼續(xù),得到一系列點(diǎn)P1,P2,P3,…,Pn.若Pn與P重合,則n的最小值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•裕華區(qū)二模)如圖,直線l1與l2相交于點(diǎn)P,點(diǎn)P橫坐標(biāo)為-1,l1的解析表達(dá)式為y=
1
2
x+3,且l1與y軸交于點(diǎn)A,l2與y軸交于點(diǎn)B,點(diǎn)A與點(diǎn)B恰好關(guān)于x軸對稱.
(1)求點(diǎn)B的坐標(biāo);
(2)求直線l2的解析表達(dá)式;
(3)若點(diǎn)M為直線l2上一動點(diǎn),直接寫出使△MAB的面積是△PAB的面積的
1
2
的點(diǎn)M的坐標(biāo);
(4)當(dāng)x為何值時,l1,l2表示的兩個函數(shù)的函數(shù)值都大于0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l1與l2相交于點(diǎn)P,l1的函數(shù)表達(dá)式y(tǒng)=2x+3,點(diǎn)P的橫坐標(biāo)為-1,且l2交y軸于點(diǎn)A(0,-1).
(1)求出點(diǎn)P的坐標(biāo);
(2)求出直線l2的函數(shù)關(guān)系式;
(3)求l1、l2與x軸所圍成的△PBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河北省石家莊市裕華區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,直線l1與l2相交于點(diǎn)P,點(diǎn)P橫坐標(biāo)為-1,l1的解析表達(dá)式為y=x+3,且l1與y軸交于點(diǎn)A,l2與y軸交于點(diǎn)B,點(diǎn)A與點(diǎn)B恰好關(guān)于x軸對稱.
(1)求點(diǎn)B的坐標(biāo);
(2)求直線l2的解析表達(dá)式;
(3)若點(diǎn)M為直線l2上一動點(diǎn),直接寫出使△MAB的面積是△PAB的面積的的點(diǎn)M的坐標(biāo);
(4)當(dāng)x為何值時,l1,l2表示的兩個函數(shù)的函數(shù)值都大于0?

查看答案和解析>>

同步練習(xí)冊答案