精英家教網 > 初中數學 > 題目詳情

【題目】如圖,三個正比例函數的圖象分別對應表達式:①y=ax,②y=bx,③y=cx,將a,b,c從小到大排列并用“<”連接為

【答案】a<c<b
【解析】解:根據三個函數圖象所在象限可得a<0,b>0,c>0,
再根據直線越陡,|k|越大,則b>c.
則b>c>a,
所以答案是:a<c<b.
【考點精析】利用一次函數的性質和一次函數的圖象和性質對題目進行判斷即可得到答案,需要熟知一般地,一次函數y=kx+b有下列性質:(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減;一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,小麗蕩秋千,秋千鏈子的長OA為2.5米,秋千向兩邊擺動的角度相同,擺動的水平距離AB為3米,則秋千擺至最高位置時與最低價位置時的高度之差(即CD)為米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,AB=16.點P是斜邊AB上一點.過點P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點Q,設AP=x,△APQ的面積為y,則y與x之間的函數圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC與BD交于點O,延長BC到E,使得CE=AD,連接DE.
(1)求證:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC與BD交于點O,延長BC到E,使得CE=AD,連接DE.
(1)求證:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在信宜市某“三華李”種植基地有A、B兩個品種的樹苗出售,已知A種比B種每株多2元,買1株A種樹苗和2株B種樹苗共需20元.
(1)問A、B兩種樹苗每株分別是多少元?
(2)為擴大種植,某農戶準備購買A、B兩種樹苗共360株,且A種樹苗數量不少于B種數量的一半,請求出費用最省的購買方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在信宜市某“三華李”種植基地有A、B兩個品種的樹苗出售,已知A種比B種每株多2元,買1株A種樹苗和2株B種樹苗共需20元.
(1)問A、B兩種樹苗每株分別是多少元?
(2)為擴大種植,某農戶準備購買A、B兩種樹苗共360株,且A種樹苗數量不少于B種數量的一半,請求出費用最省的購買方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數y= 在第一象限的圖象經過點B.若OA2﹣AB2=12,則k的值為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了了解同學們每月零花錢的數額,校園小記者隨機調查了本校部分同學,根據調查結果,繪制出了如下兩個尚不完整的統(tǒng)計圖表. 調查結果統(tǒng)計表

組別

分組(單位:元)

人數

A

0≤x<30

4

B

30≤x<60

16

C

60≤x<90

a

D

90≤x<120

b

E

x≥120

2


請根據以上圖表,解答下列問題:
(1)填空:這次被調查的同學共有人,a+b= , m=
(2)求扇形統(tǒng)計圖中扇形C的圓心角度數;
(3)該校共有學生1000人,請估計每月零花錢的數額x在60≤x<120范圍的人數.

查看答案和解析>>

同步練習冊答案