如圖,已知拋物線y=ax2+bx+c與x軸交于A(1,0),B(3,0)兩點,且過點(-1,16),拋物線的頂點是點C,對稱軸與x軸的交點為點D,原點為點O.在y軸的正半軸上有一動點N,使以A、O、N這三點為頂點的三角形與以C、A、D這三點為頂點的三角形相似.求:
(1)這條拋物線的解析式;
(2)點N的坐標(biāo).
(1)∵拋物線y=ax2+bx+c經(jīng)過點A(1,0),B(3,0),(-1,16),
a+b+c=0
9a+3b+c=0
a-b+c=16
,
解得
a=2
b=-8
c=6
,
∴拋物線的解析式為y=2x2-8x+6;

(2)∵y=2x2-8x+6=2(x-2)2-2,
∴頂點C的坐標(biāo)為(2,-2),
點D的坐標(biāo)為(2,0),
∴CD=2,
∵A(1,0),
∴AD=2-1=1,
①ON和DC是對應(yīng)邊時,△AON△ADC,
ON
DC
=
AO
AD
,
ON
2
=
1
1
,
解得ON=2,
∴點N(0,2);
②ON和DA是對應(yīng)邊時,△AON△CDA,
ON
DA
=
AO
CD
,
ON
1
=
1
2
,
解得ON=
1
2
,
∴點N(0,
1
2
),
綜上所述,點N的坐標(biāo)為(0,2)或(0,
1
2
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(-1,0),點B的坐標(biāo)為(3,0),二次函數(shù)y=x2的圖象記為拋物線l1

(1)平移拋物線l1,使平移后的拋物線經(jīng)過A、B兩點,記為拋物線l2,求拋物線l2的函數(shù)表達式;
(2)設(shè)拋物線l2的頂點為C,請你判斷y軸上是否存在點K,使得∠BKC=90°,若存在,求出K點坐標(biāo),若不存在,請說明理由;
(3)拋物線l2與y軸交于點D,點P是線段BD上的一個動點,過點P,作y軸的平行線,交拋物線l2于點E,求線段PE長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=ax2+c(a≠0)與直線y=kx+b(k≠0)相交于A(2,1)、B(1,-1)兩點,你能求出拋物線和直線的函數(shù)表達式嗎?畫出草圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點M在第一象限,拋物線與x軸相交于A、B兩點(點A在點B的左邊),與y軸交與點C,O為坐標(biāo)原點,如果△ABM是直角三角形,AB=2,OM=
5

(1)求點M的坐標(biāo);
(2)求拋物線y=ax2+bx+c的解析式;
(3)在拋物線的對稱軸上是否存在點P,使得△PAC為直角三角形?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-
1
4
x2+bx+c
與x軸交于A、B,與y軸交于點C,連結(jié)AC、BC,D是線段OB上一動點,以CD為一邊向右側(cè)作正方形CDEF,連結(jié)BF.若S△OBC=8,AC=BC
(1)求拋物線的解析式;
(2)求證:BF⊥AB;
(3)求∠FBE;
(4)當(dāng)D點沿x軸正方向移動到點B時,點E也隨著運動,則點E所走過的路線長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

學(xué)校大門如圖所示是一拋物線形水泥建筑物,大門的地面寬度為8米,兩側(cè)距地4米高處各有一掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為6米,則該校門的高度(精確到0.1米)為( 。
A.8.9米B.9.1米C.9.2米D.9.3米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+5x+m經(jīng)過點A(1,0),與y軸交于點B,
(1)求m的值;
(2)若拋物線與x軸的另一交點為C,求△CAB的面積;
(3)P是y軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,試求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2+bx+c與直線y=x+1有兩個交點A、B.
(1)當(dāng)AB的中點落在y軸時,求c的取值范圍;
(2)當(dāng)AB=2
2
,求c的最小值,并寫出c取最小值時拋物線的解析式;
(3)設(shè)點P(t,T)在AB之間的一段拋物線上運動,S(t)表示△PAB的面積.
①當(dāng)AB=2
2
,且拋物線與直線的一個交點在y軸時,求S(t)的最大值,以及此時點P的坐標(biāo);
②當(dāng)AB=m(正常數(shù))時,S(t)是否仍有最大值,若存在,求出S(t)的最大值以及此時點P的坐標(biāo)(t,T)滿足的關(guān)系,若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的圖象如圖所示,根據(jù)圖象可知,拋物線的解析式可能是(  )
A.y=x2-x-2B.y=-
1
2
x2-
1
2
x+2
C.y=-
1
2
x2-
1
2
x+1
D.y=-x2+x+2

查看答案和解析>>

同步練習(xí)冊答案