【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(m,n)m0)在雙曲線(xiàn)y上.

1)如圖1,m1,∠AOB45°,點(diǎn)B正好在yx0)上,求B點(diǎn)坐標(biāo);

2)如圖2,線(xiàn)段OAO點(diǎn)旋轉(zhuǎn)至OC,且C點(diǎn)正好落在y上,C(a,b),試求ma的數(shù)量關(guān)系.

【答案】1B(,);(2,

【解析】

(1)作出輔助線(xiàn)如圖,證得RtFAORtDAG,求得點(diǎn)G的坐標(biāo)為(53),繼而求得直線(xiàn)OG的解析式,從而求得點(diǎn)B的坐標(biāo);

(2)由題意得A(m,)C(a,),OA2=OC2,計(jì)算整理得(m2-a2)(1-)=0,即可求解.

(1)∵點(diǎn)A(m,n)在雙曲線(xiàn)y=上,且m=1

,

∴點(diǎn)A的坐標(biāo)為(1,4),

AGOA交直線(xiàn)OB于點(diǎn)G,作GEy軸于E,作AFy軸于F,作AD軸交GE于點(diǎn)D,如圖所示:

∵點(diǎn)A的坐標(biāo)為(14),

FA=1FO=4,

AGOA,∠AOB=45°,

∴△AOG為等腰直角三角形,

AO=AG

∵∠FAO+OAD=DAG+OAD=90°,

∴∠FAO=DAG,

RtFAORtDAG,

FO= DG=4FA=DA=1,

GEy軸, AFy軸,AD軸,FA=DA=1

∴四邊形ADEF為正方形,

FA=DA= DE=EF=1

GE=DE+DG=5,EO=FO-EF=3,

∴點(diǎn)G的坐標(biāo)為(5,3),

設(shè)直線(xiàn)OG的解析式為,

把點(diǎn)G的坐標(biāo)為(53)代入得:,

∴直線(xiàn)OG的解析式為,

解方程組,

得:(負(fù)值已舍),

∴點(diǎn)B的坐標(biāo)為(,);

(2)根據(jù)題意:A(m),C(a,),

OA2=OC2,

m2+=2+

整理得:(m2-a2)(1-)=0,()()()()=0,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC,DE分別在邊AB、AC上,下列條件中,不能確定ADE∽△ACB的是(  )

A. AED=∠B B. BDE+C180°

C. ADBCACDE D. ADABAEAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了落實(shí)國(guó)務(wù)院的指示精神,某地方政府出臺(tái)了一系列三農(nóng)優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶(hù)生產(chǎn)經(jīng)銷(xiāo)一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量y(千克)與銷(xiāo)售價(jià)x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷(xiāo)售利潤(rùn)為w元.

1)求wx之間的函數(shù)關(guān)系式.

2)該產(chǎn)品銷(xiāo)售價(jià)定為每千克多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?

3)如果物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷(xiāo)售價(jià)不高于每千克28元,該農(nóng)戶(hù)想要每天獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售價(jià)應(yīng)定為每千克多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的對(duì)角線(xiàn),,的邊,,的長(zhǎng)是三個(gè)連續(xù)偶數(shù),分別是邊,上的動(dòng)點(diǎn),且,將沿著折疊得到,連接,.若為直角三角形時(shí),的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若拋物線(xiàn)軸相交于,兩點(diǎn),與軸相交于點(diǎn),直線(xiàn)經(jīng)過(guò)點(diǎn),

1)求拋物線(xiàn)的解析式;

2)點(diǎn)是直線(xiàn)下方拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)軸于點(diǎn),交于點(diǎn),連接

①線(xiàn)段是否有最大值?如果有,求出最大值;如果沒(méi)有,請(qǐng)說(shuō)明理由;

②在點(diǎn)運(yùn)動(dòng)的過(guò)程中,是否存在點(diǎn),恰好使是以為腰的等腰三角形?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)北方又進(jìn)入了火災(zāi)多發(fā)季節(jié),為此,某校在全校1200名學(xué)生中隨機(jī)抽取一部分人進(jìn)行“安全防火,警鐘長(zhǎng)鳴”知識(shí)問(wèn)卷調(diào)查活動(dòng),對(duì)問(wèn)卷調(diào)查成績(jī)按“很好”、“較好”、“一般”“較差”四類(lèi)匯總分析,并繪制了如下扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.

1)本次活動(dòng)共抽取了多少名同學(xué)?

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)根據(jù)以上調(diào)查結(jié)果分析,估計(jì)該校1200名學(xué)生中,對(duì)“安全防火”知識(shí)了解“較好”和“很好”的學(xué)生大約共計(jì)有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AD=AB,BAD的平分線(xiàn)交BC于點(diǎn)E,DHAE于點(diǎn)H,連接BH并延長(zhǎng)交CD于點(diǎn)F,連接DEBF于點(diǎn)O,下列結(jié)論:①∠AED=CED;OE=OD;BH=HF;BC﹣CF=2HE;AB=HF,其中正確的有(

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BCD90°,且BCDC,直線(xiàn)PQ經(jīng)過(guò)點(diǎn)D.設(shè)PDCα45°α135°),BAPQ于點(diǎn)A,將射線(xiàn)CA繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)90°,與直線(xiàn)PQ交于點(diǎn)E

1)當(dāng)α125°時(shí),ABC   °;

2)求證:ACCE

3)若ABC的外心在其內(nèi)部,直接寫(xiě)出α的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,DE平分∠ADB,交ABE,BF平分∠CBD,交CDF.

(1)求證:△ADE≌△CBF;

(2)當(dāng)ADBD滿(mǎn)足什么關(guān)系時(shí),四邊形DEBF是矩形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案