【題目】下列四個(gè)選項(xiàng)中,哪一個(gè)為多項(xiàng)式8x210x2的因式( )

A.2x2 B2x2

C.4x1 D4x2

【答案】A.

【解析】

試題分析:將8x2-10x+2進(jìn)行分解因式得出8x2-10x+2=(4x-1)(2x-2),進(jìn)而得出答案即可.

試題解析:8x2-10x+2=2(4x2-5x+1),

=2(4x-1)(x-1),

=(4x-1)(2x-2),

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了籌備校慶活動(dòng),準(zhǔn)備印制一批校慶紀(jì)念冊(cè)。該紀(jì)念冊(cè)分AB兩種,每冊(cè)都需要10張8K大小的紙,其中A紀(jì)念冊(cè)有4張彩色頁和6張黑白頁組成;B紀(jì)念冊(cè)有6張彩色頁和4張黑白頁組成。印制這批紀(jì)念冊(cè)的總費(fèi)用由制版費(fèi)和印制費(fèi)兩部分組成,制版費(fèi)與印數(shù)無關(guān),價(jià)格為:彩色頁300元∕張,黑白頁50元∕張;印制費(fèi)與總印數(shù)的關(guān)系見下表。

(1)印制這批紀(jì)念冊(cè)的制版費(fèi)為 元。

(2)若印制A、B兩種紀(jì)念冊(cè)各2千冊(cè),則共需多少費(fèi)用?

(3)如果該校共印制了A、B兩種紀(jì)念冊(cè)6千冊(cè),一共花費(fèi)了75500元,則該校印制了A、B兩種紀(jì)念冊(cè)各多少冊(cè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是(

A.如圖1,展開后測(cè)得1=2

B.如圖2,展開后測(cè)得1=23=4

C.如圖3,測(cè)得1=2

D.如圖4,展開后再沿CD折疊,兩條折痕的交點(diǎn)為O,測(cè)得OA=OB,OC=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖17張長為a,寬為bab)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個(gè)矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時(shí),按照同樣的放置方式,S始終保持不變,則ab滿足( )

A. a=b B. a=2b

C. a=3b D. a=4b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形的2個(gè)頂點(diǎn)的坐標(biāo)為(﹣3,0),(1,0),第三個(gè)頂點(diǎn)在y軸上,且與x軸的距離是3個(gè)單位,求第四個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各題去括號(hào)所得結(jié)果正確的是( 。

A. x2﹣(x﹣y+2z)=x2﹣x+y+2z B. x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1

C. 3x﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1 D. (x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

12a3a23÷a

2

3)(x﹣12xx+1);

420172﹣2016×2018

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是( )
A.2a3+a2=3a5
B.(3a)2=6a2
C.(a+b)2=a2+b2
D.2a2a3=2a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,在平行四邊形ABCD中,AC、BD交于點(diǎn)O,過點(diǎn)O作直線EF分別交AD、BC于點(diǎn)E、F,

求證:OE=OF.

(2)在圖①中,過點(diǎn)O作直線GH分別交AB、CD于點(diǎn)G、H,且滿足GHEF,連結(jié)EG、GF、FH、HE.如圖②,試判斷四邊形EGFH的形狀,并說明理由;

(3)在(2)的條件下,

若平行四邊形ABCD變?yōu)榫匦螘r(shí),四邊形EGFH是 ;

若平行四邊形ABCD變?yōu)榱庑螘r(shí),四邊形EGFH是 ;

若平行四邊形ABCD變?yōu)檎叫螘r(shí),四邊形EGFH是

查看答案和解析>>

同步練習(xí)冊(cè)答案