【題目】如圖,⊙O的半徑OA⊥OC,點(diǎn)D在上,且=2,OA=4.

(1)∠COD=    °;

(2)求弦AD的長(zhǎng);

(3)P是半徑OC上一動(dòng)點(diǎn),連結(jié)AP、PD,請(qǐng)求出AP+PD的最小值,并說(shuō)明理由.

(解答上面各題時(shí),請(qǐng)按題意,自行補(bǔ)足圖形)

【答案】(1)30;(2)弦AD長(zhǎng)為4;(3)AP+PD的最小值為,理由見(jiàn)解析.

【解析】(本小題滿分12分)

解:(1)30;……………………………………………………………………1分

(2)連結(jié)OD、AD(如圖2).

∵OA⊥OC,∴∠AOC=90°.∵=2,

設(shè)所對(duì)的圓心角∠COD=,………………………………………………1分

則∠AOD=,…………………………………………………………………2分

由∠AOD+∠DOC=90°,

=90°,∴=30°,=60°,…………………………3分

即∠AOD=60°,又∵OA=OD,∴△AOD為等邊三角形,…………4分

∴AD=OA=4;…………………………………………………………………5分

(3)過(guò)點(diǎn)D作DE⊥OC,交⊙O于點(diǎn)E,……………………………………1分

連結(jié)AE,交OC于點(diǎn)P(如圖3),………………………………………………2分

則此時(shí),AP+PD的值最。

∵根據(jù)圓的對(duì)稱性,點(diǎn)E是點(diǎn)D關(guān)于OC的對(duì)稱點(diǎn),

OC是DE的垂直平分線,即PD=PE.………………………………………3分

∴AP+PD=AP+PE=AE,

若在OC上另取一點(diǎn)F,連結(jié)AF、FD及EF,

在△AFE中,AF+FE>AE,

即AF+FE>AP+PD,

∴可知AP+PD最。捶

∵∠AED=∠AOD=30°,

又∵OA⊥OC,DE⊥OC,∴OA∥DE,

∴∠OAE=∠AED=30°.

延長(zhǎng)AO交⊙O于點(diǎn)B,連結(jié)BE,∵AB為直徑,

∴△ABE為直角三角形.由=cos∠BAE,……………………………5分

得AE=AB·cos30°=2×4×,……………………………6分

即AP+PD=,

[也可利用勾股定理求得AE]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m+n=2,mn=-2,(2-m)(2-n)的值為(  )

A. 2 B. -2 C. 0 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形EFGH的三個(gè)頂點(diǎn)E、G、H分別在正方形ABCD的邊AB、CD、DA上,連接CF.

(1)求證:HEA=CGF;

(2)當(dāng)AH=DG時(shí),求證:菱形EFGH為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是4,DAC的角平分線交DC于點(diǎn)E,點(diǎn)P、Q分別是邊ADAE上的動(dòng)點(diǎn)(兩動(dòng)點(diǎn)不重合).

1PQ+DQ的最小值是   

2)說(shuō)出PQ+DQ取得最小值時(shí),點(diǎn)P、Q的位置,并在圖中畫出;

3)請(qǐng)對(duì)(2)中你所給的結(jié)論進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,真命題是( 。

A. 平行四邊形的對(duì)角線相等 B. 矩形的對(duì)角線平分對(duì)角

C. 菱形的對(duì)角線互相平分 D. 梯形的對(duì)角線互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】月初,明斯克航母告別鹽田,據(jù)不完全估算,16年間累計(jì)接待游客11000000人次,11000000用科學(xué)記數(shù)法表示是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的頂點(diǎn)M是直線=-和直線的交點(diǎn).

(1)若直線過(guò)點(diǎn)D(0,-3),求M點(diǎn)的坐標(biāo)及二次函數(shù)的解析式;

(2)試證明無(wú)論取任何值,二次函數(shù)的圖象與直線總有兩個(gè)不同的交點(diǎn);

(3)在(1)的條件下,若二次函數(shù)的圖象與軸交于點(diǎn)C,與的右交點(diǎn)為A,試在直線=-上求異于M的點(diǎn)P,使P在△CMA的外接圓上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明從家里出發(fā)到超市買東西,再回到家,他離家的距離y(千米)與時(shí)間t(分鐘)的關(guān)系如圖所示.請(qǐng)你根據(jù)圖象回答下列問(wèn)題:

(1)小明家離超市的距離是   千米;

(2)小明在超市買東西時(shí)間為   小時(shí);

(3)小明去超市時(shí)的速度是    千米/小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x,求x6+x5+2x4-4x3+3x2+4x-4的整數(shù)部分.

查看答案和解析>>

同步練習(xí)冊(cè)答案