【題目】如圖,⊙O的半徑OA⊥OC,點(diǎn)D在上,且=2,OA=4.
(1)∠COD= °;
(2)求弦AD的長(zhǎng);
(3)P是半徑OC上一動(dòng)點(diǎn),連結(jié)AP、PD,請(qǐng)求出AP+PD的最小值,并說(shuō)明理由.
(解答上面各題時(shí),請(qǐng)按題意,自行補(bǔ)足圖形)
【答案】(1)30;(2)弦AD長(zhǎng)為4;(3)AP+PD的最小值為,理由見(jiàn)解析.
【解析】(本小題滿分12分)
解:(1)30;……………………………………………………………………1分
(2)連結(jié)OD、AD(如圖2).
∵OA⊥OC,∴∠AOC=90°.∵=2,
設(shè)所對(duì)的圓心角∠COD=,………………………………………………1分
則∠AOD=,…………………………………………………………………2分
由∠AOD+∠DOC=90°,
得+=90°,∴=30°,=60°,…………………………3分
即∠AOD=60°,又∵OA=OD,∴△AOD為等邊三角形,…………4分
∴AD=OA=4;…………………………………………………………………5分
(3)過(guò)點(diǎn)D作DE⊥OC,交⊙O于點(diǎn)E,……………………………………1分
連結(jié)AE,交OC于點(diǎn)P(如圖3),………………………………………………2分
則此時(shí),AP+PD的值最。
∵根據(jù)圓的對(duì)稱性,點(diǎn)E是點(diǎn)D關(guān)于OC的對(duì)稱點(diǎn),
OC是DE的垂直平分線,即PD=PE.………………………………………3分
∴AP+PD=AP+PE=AE,
若在OC上另取一點(diǎn)F,連結(jié)AF、FD及EF,
在△AFE中,AF+FE>AE,
即AF+FE>AP+PD,
∴可知AP+PD最。捶
∵∠AED=∠AOD=30°,
又∵OA⊥OC,DE⊥OC,∴OA∥DE,
∴∠OAE=∠AED=30°.
延長(zhǎng)AO交⊙O于點(diǎn)B,連結(jié)BE,∵AB為直徑,
∴△ABE為直角三角形.由=cos∠BAE,……………………………5分
得AE=AB·cos30°=2×4×=,……………………………6分
即AP+PD=,
[也可利用勾股定理求得AE]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形EFGH的三個(gè)頂點(diǎn)E、G、H分別在正方形ABCD的邊AB、CD、DA上,連接CF.
(1)求證:∠HEA=∠CGF;
(2)當(dāng)AH=DG時(shí),求證:菱形EFGH為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)是4,∠DAC的角平分線交DC于點(diǎn)E,點(diǎn)P、Q分別是邊AD和AE上的動(dòng)點(diǎn)(兩動(dòng)點(diǎn)不重合).
(1)PQ+DQ的最小值是 .
(2)說(shuō)出PQ+DQ取得最小值時(shí),點(diǎn)P、Q的位置,并在圖中畫出;
(3)請(qǐng)對(duì)(2)中你所給的結(jié)論進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,真命題是( 。
A. 平行四邊形的對(duì)角線相等 B. 矩形的對(duì)角線平分對(duì)角
C. 菱形的對(duì)角線互相平分 D. 梯形的對(duì)角線互相垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】月初,明斯克航母告別鹽田,據(jù)不完全估算,16年間累計(jì)接待游客11000000人次,11000000用科學(xué)記數(shù)法表示是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)=++的頂點(diǎn)M是直線=-和直線=+的交點(diǎn).
(1)若直線=+過(guò)點(diǎn)D(0,-3),求M點(diǎn)的坐標(biāo)及二次函數(shù)=++的解析式;
(2)試證明無(wú)論取任何值,二次函數(shù)=++的圖象與直線=+總有兩個(gè)不同的交點(diǎn);
(3)在(1)的條件下,若二次函數(shù)=++的圖象與軸交于點(diǎn)C,與的右交點(diǎn)為A,試在直線=-上求異于M的點(diǎn)P,使P在△CMA的外接圓上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明從家里出發(fā)到超市買東西,再回到家,他離家的距離y(千米)與時(shí)間t(分鐘)的關(guān)系如圖所示.請(qǐng)你根據(jù)圖象回答下列問(wèn)題:
(1)小明家離超市的距離是 千米;
(2)小明在超市買東西時(shí)間為 小時(shí);
(3)小明去超市時(shí)的速度是 千米/小時(shí).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com