【題目】已知一個氧原子的質(zhì)量為2.657×1023克,那么2000個氧原子的質(zhì)量用科學(xué)記數(shù)法表示為______

【答案】5.314×1020

【解析】

絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.

2.657×1023×20005.314×1020

故答案為:5.314×1020

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a+b=﹣5,ab6,試求:

1a2+b2的值;

2a2b+ab2的值;

3ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD是平行四邊形,AE∥CF,且分別交對角線BD于點E,F(xiàn).
(1)求證:△AEB≌△CFD;
(2)連接AF,CE,若∠AFE=∠CFE,求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,M的圓心M(﹣1,2),M經(jīng)過坐標原點O,與y軸交于點A,經(jīng)過點A的一條直線l解析式為:y=﹣x+4與x軸交于點B,以M為頂點的拋物線經(jīng)過x軸上點D(2,0)和點C(﹣4,0).

(1)求拋物線的解析式;

(2)求證:直線l是M的切線;

(3)點P為拋物線上一動點,且PE與直線l垂直,垂足為E,PFy軸,交直線l于點F,是否存在這樣的點P,使PEF的面積最小?若存在,請求出此時點P的坐標及PEF面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的周長為15cm,其中一邊長為3cm.則該等腰三角形的底長為_________ cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育老師測量了自己任教的甲、乙兩班男生的身高,并制作了如下不完整的統(tǒng)計圖表.

身高分組

頻數(shù)

頻率

152≤x<155

3

0.06

155≤x<158

7

0.14

158≤x<161

m

0.28

161≤x<164

13

n

164≤x<167

9

0.18

167≤x<170

3

0.06

170≤x<173

1

0.02

根據(jù)以上統(tǒng)計圖表完成下列問題:

(1)統(tǒng)計表中m= ,n= ,并將頻數(shù)分布直方圖補充完整;

(2)在這次測量中兩班男生身高的中位數(shù)在: 范圍內(nèi);

(3)在身高≥167cm的4人中,甲、乙兩班各有2人,現(xiàn)從4人中隨機推選2人補充到學(xué)校國旗護衛(wèi)隊中,請用列表或畫樹狀圖的方法求出這兩人都來自相同班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+3經(jīng)過點A(1,0)和點B(5,0).

(1)求該拋物線所對應(yīng)的函數(shù)解析式;

(2)該拋物線與直線相交于C、D兩點,點P是拋物線上的動點且位于x軸下方,直線PMy軸,分別與x軸和直線CD交于點M、N.

連結(jié)PC、PD,如圖1,在點P運動過程中,PCD的面積是否存在最大值?若存在,求出這個最大值;若不存在,說明理由;

連結(jié)PB,過點C作CQPM,垂足為點Q,如圖2,是否存在點P,使得CNQ與PBM相似?若存在,求出滿足條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在正方形中,點分別在上,于點,求證;

如圖,將中的正方形改為矩形,于點,探究的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,拋物線經(jīng)過點,.

(1)求點B的坐標和拋物線的解析式;

(2)M(m,0)為x軸上一個動點,過點M垂直于x軸的直線與直線AB和拋物線分別交于點P、N,

在線段上運動,若以,,為頂點的三角形與相似,求點的坐標;

軸上自由運動,若三個點,中恰有一點是其它兩點所連線段的中點(三點重合除外),則稱,,三點為共諧點.請直接寫出使得,三點成為共諧點的值.

查看答案和解析>>

同步練習(xí)冊答案