【題目】如圖,正方形ABCD中,AD=4,點(diǎn)E是對角線AC上一點(diǎn),連接DE,過點(diǎn)E作EF⊥ED,交AB于點(diǎn)F,連接DF,交AC于點(diǎn)G,將△EFG沿EF翻折,得到△EFM,連接DM,交EF于點(diǎn)N,若點(diǎn)F是AB的中點(diǎn),則△EMN的周長是 .
【答案】.
【解析】
試題分析:如圖1,過E作PQ⊥DC,交DC于P,交AB于Q,連接BE,∵DC∥AB,∴PQ⊥AB,∵四邊形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,設(shè)PC=x,則PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易證明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=BF,∵AB=4,F(xiàn)是AB的中點(diǎn),∴BF=2,∴FQ=BQ=PE=1,∴CE=,Rt△DAF中,DF==,∵DE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EF==,∴PD==3,如圖2,∵DC∥AB,∴△DGC∽△FGA,∴ = =2,∴CG=2AG,DG=2FG,∴FG==,∵AC==,∴CG==,∴EG==,連接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH= =,∴EH=EF﹣FH=﹣=,∴∠NDE=∠AEF,∴tan∠NDE=tan∠AEF=,∴ =,∴EN=,∴NH=EH﹣EN=﹣=,Rt△GNH中,GN= = =,由折疊得:MN=GN,EM=EG,∴△EMN的周長=EN+MN+EM=++=;
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABM=45°,AM⊥BM,垂足為M,點(diǎn)C是BM延長線上一點(diǎn),連接AC.
(1)如圖1,若AB=3,BC=5,求AC的長;
(2)如圖2,點(diǎn)D是線段AM上一點(diǎn),MD=MC,點(diǎn)E是△ABC外一點(diǎn),EC=AC,連接ED并延長交BC于點(diǎn)F,且點(diǎn)F是線段BC的中點(diǎn),求證:∠BDF=∠CEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:探究函數(shù)y=|x|﹣2的圖象與性質(zhì).
小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=|x|﹣2的圖象與性質(zhì)進(jìn)行了探究.
下面是小華的探究過程,請補(bǔ)充完整:
(1)在函數(shù)y=|x|﹣2中,自變量x可以是任意實(shí)數(shù);
如表是y與x的幾組對應(yīng)值.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 1 | 0 | ﹣1 | ﹣2 | ﹣1 | 0 | m | … |
①m=;
②若A(n,8),B(10,8)為該函數(shù)圖象上不同的兩點(diǎn),則n=;
(2)①如圖,在平面直角坐標(biāo)系xOy中,描出以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(3)該函數(shù)的最小值為;
(4)已知直線 與函數(shù)y=|x|﹣2的圖象交于C、D兩點(diǎn),當(dāng)y1≥y時x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式由左邊到右邊的變形中,屬于分解因式的是( )
A.a(x+y)=ax+ay
B.x2﹣4x+4=x(x﹣4)+4
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+6x=(x+4)(x﹣4)+6x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題6分)甲、乙兩人進(jìn)行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com