【題目】如圖,在等腰直角三角形ABC中,∠C=90°,AB=8,點(diǎn)O是AB的中點(diǎn).將一個(gè)邊長(zhǎng)足夠大的Rt△DEF的直角頂點(diǎn)E放在點(diǎn)O處,并將其繞點(diǎn)O旋轉(zhuǎn),始終保持DE與AC邊交于點(diǎn)G,EF與BC邊交于點(diǎn)H.
(1)當(dāng)點(diǎn)G在AC邊什么位置時(shí),四邊形CGOH是正方形.
(2)等腰直角三角ABC的邊被Rt△DEF覆蓋部分的兩條線段CG與CH的長(zhǎng)度之和是否會(huì)發(fā)生變化,如不發(fā)生變化,請(qǐng)求出CG與CH之和的值:如發(fā)生變化,請(qǐng)說(shuō)明理由.
【答案】(1)點(diǎn)G在AC的中點(diǎn)時(shí),四邊形CGOH是正方形;(2)CG與CH的和不會(huì)發(fā)生變化,CG+CH=8.
【解析】
(1)由三角形中位線定理可得OG∥BC,OG=BC,可證四邊形CGOH是矩形,由等腰直角三角形的性質(zhì)可得∠ACO=∠COG=45°,可得CG=GO,可得結(jié)論;
(2)由“ASA”可證△GOC≌△HOB,可得CG=BH,即可得CG+CH=HB+CH=BC=8.
解:(1)當(dāng)點(diǎn)G在AC的中點(diǎn)時(shí),四邊形CGOH是正方形,
連接CO,
∵O為AB的中點(diǎn),點(diǎn)G是AC中點(diǎn),
∴OG∥BC,OG=BC,
∴∠CGO=∠C=90°,
∵∠GOF=90°,
∴四邊形CGOH是矩形,
∵AC=BC,∠ACB=90°,AO=BO,
∴∠ACO=45°,且∠CGO=90°,
∴∠ACO=∠COG=45°,
∴CG=GO,
∴矩形CGOH是正方形;
(2)CG與CH的和不會(huì)發(fā)生變化,
理由如下:
連接OC,
∵△ABC是等腰直角三角形且點(diǎn)O為中點(diǎn)
∴∠GCO=∠B=45°,∠COB=90°,CO=BO
∵∠DOF=90°=∠COB,
∴∠GOC=∠HOB,且CO=BO,∠GCO=∠B=45°,
∴△GOC≌△HOB(ASA)
∴HB=GC,
∴CG+CH=HB+CH=BC
∵AB=8,
∴BC=AC=8
∴CG+CH=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),頂點(diǎn)為C.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)若將該拋物線向上平移t個(gè)單位后,它與x軸恰好只有一個(gè)交點(diǎn),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn)。
(1)求b、c的值;
(2)P為拋物線上的點(diǎn),且滿(mǎn)足S△PAB=8,求P點(diǎn)的坐標(biāo)
(3)設(shè)拋物線交y軸于C點(diǎn),在該拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,是⊙O內(nèi)接等邊三角形,直線MN與⊙O相切于A點(diǎn),P是弧BC的中點(diǎn),則.
(1)如圖2,正方形ABCD是⊙O內(nèi)接正方形,直線MN與⊙O相切于A點(diǎn),P是弧BC的中點(diǎn),則________;
(2)如圖3,若正n邊形ABC……PQ是⊙O內(nèi)接正n邊形,直線MN與⊙O相切于A點(diǎn),P是弧BC的中點(diǎn),若的度數(shù)小于,則n的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠B=60°,在AC邊上取點(diǎn)O畫(huà)圓,使⊙O經(jīng)過(guò)A、B兩點(diǎn),下列結(jié)論中:①AO=BC;②AO=2CO;③延長(zhǎng)BC交⊙O與D,則A、B、D是⊙O的三等分點(diǎn);④以O為圓心,以OC為半徑的圓與AB相切.正確的序號(hào)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△DEC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在邊AB上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為E,連接BE.
(Ⅰ)求證:∠A=∠EBC;
(Ⅱ)若已知旋轉(zhuǎn)角為50°,∠ACE=130°,求∠CED和∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形木框ABCD中,AB=2AD=4,將其按順時(shí)針變形為ABC′D′,當(dāng)∠AD′B=90°時(shí),四邊形對(duì)稱(chēng)中心O經(jīng)過(guò)的路徑長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線C1:y=﹣x2+2x.
(1)補(bǔ)全表格:
拋物線 | 頂點(diǎn)坐標(biāo) | 與x軸交點(diǎn)坐標(biāo) | 與y軸交點(diǎn)坐標(biāo) | |
y=﹣x2+2x | (1,1) |
|
| (0,0) |
(2)將拋物線C1向上平移3個(gè)單位得到拋物線C2,請(qǐng)畫(huà)出拋物線C1,C2,并直接回答:拋物線C2與x軸的兩交點(diǎn)之間的距離是拋物線C1與x軸的兩交點(diǎn)之間距離的多少倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=x+2與x軸交于A、B兩點(diǎn),交y軸于點(diǎn)C.
(1)判斷△ABC的形狀,并說(shuō)明理由.
(2)在拋物線對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使得以A、C、P為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com