【題目】如圖1,AB是⊙O的直徑,E是AB延長線上一點,EC切⊙O于點C,OP⊥AO交AC于點P,交EC的延長線于點D.
(1)求證:△PCD是等腰三角形;
(2)CG⊥AB于H點,交⊙O于G點,過B點作BF∥EC,交⊙O于點F,交CG于Q點,連接AF,如圖2,若sinE=,CQ=5,求AF的值.
【答案】(1)證明見解析;(2)12.
【解析】
試題分析:(1)連接OC,由切線性質(zhì)和垂直性質(zhì)得∠1+∠3=90°、∠2+∠4=90°,繼而可得∠3=∠5得證;
(2)連接OC、BC,先根據(jù)切線性質(zhì)和平行線性質(zhì)及垂直性質(zhì)證∠BCG=∠QBC得QC=QB=5,而sinE=sin∠ABF=,可知QH=3、BH=4,設(shè)圓的半徑為r,在RT在△OCH中根據(jù)勾股定理可得r的值,在RT△ABF中根據(jù)三角函數(shù)可得答案.
試題解析:(1)連接OC,∵EC切⊙O于點C,∴OC⊥DE,∴∠1+∠3=90°,又∵OP⊥OA,∴∠2+∠4=90°,∵OA=OC,∴∠1=∠2,∴∠3=∠4,又∵∠4=∠5,∴∠3=∠5,∴DP=DC,即△PCD為等腰三角形;
(2)如圖2,連接OC、BC.∵DE與⊙O相切于點E,∴∠OCB+∠BCE=90°,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC+∠BCE=90°,又∵CG⊥AB,∴∠OBC+∠BCG=90°,∴∠BCE=∠BCG,∵BF∥DE,∴∠BCE=∠QBC,∴∠BCG=∠QBC,∴QC=QB=5,∵BF∥DE,∴∠ABF=∠E,∵sinE=,∴sin∠ABF=,∴QH=3、BH=4,設(shè)⊙O的半徑為r,∴在△OCH中,,解得:r=10,又∵∠AFB=90°,sin∠ABF=,∴AF=12.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(4×104)×(2×103)﹣(6.5×103)×(6×103)
(2)(a﹣1)2+(a+3)(a﹣3)+(a﹣3)(a﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計,截止5月31日上海世博會累計入園人數(shù)為803.05萬.這個數(shù)精確到( )
A. 十分位 B. 百分位 C. 萬位 D. 百位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點A表示-5,B,C兩點所表示的數(shù)互為相反數(shù),且點B到點A的距離為4,求點B和點C各表示什么數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( )
A. 對角線互相垂直的矩形是正方形
B. 對角線相等的菱形是正方形
C. 有一個角是直角的平行四邊形是正方形
D. 一組鄰邊相等的矩形是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.
(1)求證:BC是⊙O的切線;
(2)已知AD=3,CD=2,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com