【題目】下列性質(zhì)中,菱形具有而矩形不一定具有的是( )
A.對角線相等
B.對角線互相平分
C.對角線互相垂直
D.鄰邊互相垂直

【答案】C
【解析】試題A.對角線相等是矩形具有的性質(zhì),菱形不一定具有;

B.對角線互相平分是菱形和矩形共有的性質(zhì);

C.對角線互相垂直是菱形具有的性質(zhì),矩形不一定具有;

D.鄰邊互相垂直是矩形具有的性質(zhì),菱形不一定具有.

故答案為:C.

根據(jù)菱形和矩形的性質(zhì)及四個選項(xiàng),首先排除D;根據(jù)特殊的平行四邊形中,只有菱形的對角線和正方形互相垂直,即可得出選項(xiàng)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:

(1)求出y與x之間的函數(shù)關(guān)系式;

(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負(fù)責(zé)人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】彈簧掛上物體后會伸長,已知一彈簧的長度(cm)與所掛物體的重量(kg)之間的關(guān)系如下表:

所掛物體的重量(kg)

0

1

2

3

4

5

6

7

彈簧的長度(cm)

12

12.5

13

13.5

14

14.5

15

15.5

(1)當(dāng)所掛物體的重量為3kg時,彈簧的長度是_____________cm;

(2)如果所掛物體的重量為xkg,彈簧的長度為ycm,根據(jù)上表寫出y與x的關(guān)系式;

(3)當(dāng)所掛物體的重量為5.5kg時,請求出彈簧的長度。

(4)如果彈簧的最大伸長長度為20cm,則該彈簧最多能掛多重的物體?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(1﹣)(x+1)的結(jié)果是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課外興趣小組活動時,老師提出了如下問題:

(1)如圖1,ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.

小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:

延長AD到E,使得DE=AD,再連接BE(或?qū)?/span>ACD繞點(diǎn)D逆時針旋轉(zhuǎn)180°得到EBD),把AB、AC、2AD集中在ABE中,利用三角形的三邊關(guān)系可得2AE8,則1AD4.

感悟:解題時,條件中若出現(xiàn)“中點(diǎn)”“中線”字樣,可以考慮構(gòu)造以中點(diǎn)為對稱中心的中心對稱圖形或全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.

(2)問題解決:

受到(1)的啟發(fā),請你證明下面命題:如圖2,在ABC中,D是BC邊上的中點(diǎn),DEDF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF.

①求證:BE+CFEF;②若A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明;

(3)問題拓展:

如圖3,在四邊形ABDC中,B+C=180°,DB=DC,BDC=120°,以D為頂點(diǎn)作EDF為60°角,角的兩邊分別交AB、AC于E、F兩點(diǎn),連接EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品每件標(biāo)價為150元,若按標(biāo)價打8折后,再降價10元銷售,仍獲利10%,則該商品每件的進(jìn)價為 元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半圓中AB為直徑,弦AC=CD=6,DE=EB=2,弧CDE的長度為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值

12b2+(a+b)(ab)(ab)2,其中a=3,b=

2)(2a+b2(3ab)2+5a(ab),其中a=,b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列成語中,屬于隨機(jī)事件的是( )
A.水中撈月
B.甕中捉鱉
C.守株待兔
D.探囊取物

查看答案和解析>>

同步練習(xí)冊答案