【題目】函數(shù)y=x2+bx+c的圖像與x 軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,OB=OC.點(diǎn)D在函數(shù)圖像上,CD//x軸,且CD=2,直線l 是拋物線的對(duì)稱軸,E是拋物線的頂點(diǎn).
(1)求b、c 的值;
(2)如圖①,連接BE,線段OC 上的點(diǎn)F 關(guān)于直線l 的對(duì)稱點(diǎn)F′ 恰好在線段BE上,求點(diǎn)F的坐標(biāo);
(3)如圖②,動(dòng)點(diǎn)P在線段OB上,過點(diǎn)P 作x 軸的垂線分別與BC交于點(diǎn)M,與拋物線交于點(diǎn)N.試問:拋物線上是否存在點(diǎn)Q,使得△PQN與△APM的面積相等,且線段NQ的長(zhǎng)度最小?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,說明理由.
圖 ① 圖②
【答案】(1)c=-3;(2)點(diǎn)F的坐標(biāo)為(0,-2);(3)滿足題意的點(diǎn)Q的坐標(biāo)為(,)和(,)
【解析】
(1)由條件可求得拋物線對(duì)稱軸,則可求得b的值;由OB=OC,可用c表示出B點(diǎn)坐標(biāo),代入拋物線解析式可求得c的值;
(2)可設(shè)F(0,m),則可表示出F′的坐標(biāo),由B、E的坐標(biāo)可求得直線BE的解析式,把F′坐標(biāo)代入直線BE解析式可得到關(guān)于m的方程,可求得F點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)P坐標(biāo)為(n,0),可表示出PA、PB、PN的長(zhǎng),作QR⊥PN,垂足為R,則可求得QR的長(zhǎng),用n可表示出Q、R、N的坐標(biāo).在Rt△QRN中,由勾股定理可得到關(guān)于n的二次函數(shù),利用二次函數(shù)的性質(zhì)可知其取得最小值時(shí)n的值,則可求得Q點(diǎn)的坐標(biāo).
(1)∵CD∥x軸,CD=2,∴拋物線對(duì)稱軸為x=1,∴.
∵OB=OC,C(0,c),∴B點(diǎn)的坐標(biāo)為(﹣c,0),∴0=c2+2c+c,解得:c=﹣3或c=0(舍去),∴c=﹣3;
(2)設(shè)點(diǎn)F的坐標(biāo)為(0,m).
∵對(duì)稱軸為直線x=1,∴點(diǎn)F關(guān)于直線l的對(duì)稱點(diǎn)F的坐標(biāo)為(2,m).
由(1)可知拋物線解析式為y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4).
∵直線BE經(jīng)過點(diǎn)B(3,0),E(1,﹣4),∴利用待定系數(shù)法可得直線BE的表達(dá)式為y=2x﹣6.
∵點(diǎn)F在BE上,∴m=2×2﹣6=﹣2,即點(diǎn)F的坐標(biāo)為(0,﹣2);
(3)存在點(diǎn)Q滿足題意.
設(shè)點(diǎn)P坐標(biāo)為(n,0),則PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.
作QR⊥PN,垂足為R.
∵S△PQN=S△APM,∴,∴QR=1.
分兩種情況討論:
①點(diǎn)Q在直線PN的左側(cè)時(shí),Q點(diǎn)的坐標(biāo)為(n﹣1,n2﹣4n),R點(diǎn)的坐標(biāo)為(n,n2﹣4n),N點(diǎn)的坐標(biāo)為(n,n2﹣2n﹣3),∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴時(shí),NQ取最小值1.此時(shí)Q點(diǎn)的坐標(biāo)為;
②點(diǎn)Q在直線PN的右側(cè)時(shí),Q點(diǎn)的坐標(biāo)為(n+1,n2﹣4).
同理,NQ2=1+(2n﹣1)2,∴時(shí),NQ取最小值1.此時(shí)Q點(diǎn)的坐標(biāo)為.
綜上可知存在滿足題意的點(diǎn)Q,其坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著私家車的增加,交通也越來(lái)越擁擠,通常情況下,某段公路上車輛的行駛速度(千米/時(shí))與路上每百米擁有車的數(shù)量x(輛)的關(guān)系如圖所示,當(dāng)x≥8時(shí),y與x成反比例函數(shù)關(guān)系,當(dāng)車速度低于20千米/時(shí),交通就會(huì)擁堵,為避免出現(xiàn)交通擁堵,公路上每百米擁有車的數(shù)量x應(yīng)該滿足的范圍是( )
A. x<32 B. x≤32 C. x>32 D. x≥32
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的方格紙中,把△ABC向右平移5個(gè)方格得△A1B1C1,再繞點(diǎn)B1順時(shí)針方向旋轉(zhuǎn)90°得△A2B1C2.
(1)畫出平移和旋轉(zhuǎn)后的圖形,并標(biāo)明對(duì)應(yīng)字母.
(2)求頂點(diǎn)A從開始到結(jié)束所經(jīng)過的路徑的長(zhǎng).(結(jié)果用含有π的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△在ABC中,∠C=90°,∠B=30°,以A為圓心、任意長(zhǎng)為半徑畫弧分別交AB,AC于點(diǎn)M和N,再分別以M,N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)D,給出下列說法:①DM=DN;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④S△DAC:S△ABC=1:3,其中正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)畫出△ABC關(guān)于y軸對(duì)稱的△AB1C1, 并寫出B1的坐標(biāo);
(2)將△ABC向右平移8個(gè)單位, 畫出平移后的△A2B2C2, 寫出B2的坐標(biāo);
(3)認(rèn)真觀察所作的圖形, △AB1C1與△A2B2C2有怎樣的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B兩點(diǎn)的坐標(biāo)分別為(0,6),(0,3),點(diǎn)P為x軸正半軸上一動(dòng)點(diǎn),過點(diǎn)A作AP的垂線,過點(diǎn)B作BP的垂線,兩垂線交于點(diǎn)Q,連接PQ,M為線段PQ的中點(diǎn).
(1)求證:A、B、P、Q四點(diǎn)在以M為圓心的同一個(gè)圓上;
(2)當(dāng)⊙M與x軸相切時(shí),求點(diǎn)Q的坐標(biāo);
(3)當(dāng)點(diǎn)P從點(diǎn)(2,0)運(yùn)動(dòng)到點(diǎn)(3,0)時(shí),請(qǐng)直接寫出線段QM掃過圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2﹣(m+n+1)x+m(n≥0)的兩個(gè)實(shí)數(shù)根為α、β,且α≤β.
(1)試用含α、β的代數(shù)式表示m和n;
(2)求證:α≤1≤β;
(3)若點(diǎn)P(α,β)在△ABC的三條邊上運(yùn)動(dòng),且△ABC頂點(diǎn)的坐標(biāo)分別為A(1,2)、B(,1)、C(1,1),問是否存在點(diǎn)P,使m+n=?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在對(duì)邊不相等的四邊形中,若四邊形的兩條對(duì)角線互相垂直,那么順次連結(jié)四邊形各邊中點(diǎn)得到的四邊形是( )
A.梯形B.矩形C.菱形D.正方形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com