【題目】為了增強學生體質(zhì),學校鼓勵學生多參加體育鍛煉,小華同學馬上行動,每天圍繞小區(qū)進行晨跑鍛煉.該小區(qū)外圍道路近似為如圖所示四邊形ABCD,已知四邊形ABED為正方形,∠DCE=45°,AB=100.小華某天繞該道路晨跑5圈,求小華該天晨跑的路程是多少?(結(jié)果保留整數(shù),

【答案】小華該天晨跑的路程約為2705

【解析】分析:由正方形的性質(zhì)得DEC是等腰直角三角形,然后利用勾股定理求出CD的長度,然后求出小胖每天晨跑的路程.

詳解:∵四邊形ABCD是正方形,∴DEABBEAD=100,

DEC=∠DEB=90°,又∵∠DCE=45°,

∴△DEC是等腰直角三角形,

ECDE=100,

DC,

5(ABBCCDAD)=5(100+100+100++100)

=5(400+

≈2705(),

小華該天晨跑的路程約為2705.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),ABC的頂點均在格點上,請在所給的直角坐標系中解答下列問題:

1作出ABC繞點A逆時針旋轉(zhuǎn)90°AB1C1

2作出ABC關(guān)于原點O成中心對稱的A1B2C2

3)請直接寫出以A1、B2C2為頂點的平行四邊形的第四個頂點D的坐標________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點E是BC邊上一動點(不與B、C重合).連接AE,過點E作EF⊥AE,交DC于點F.

(1)求證:△ABE∽△ECF;
(2)連接AF,試探究當點E在BC什么位置時,∠BAE=∠EAF,請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的面積為20cm2,對角線交于點O;以AB、AO為鄰邊做平行四邊形AOC1B,對角線交于點O1;以ABAO1為鄰邊做平行四邊形AO1C2B;…依此類推,則平行四邊形AO4C5B的面積為( )

A. cm2 B. cm2 C. cm2 D. cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值: ,其中x=2sin60°﹣( 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)-3+8-11-15 (2)

(3) (4)

(5)0.125×(-7)×8 (6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在△ABC中,AB=AC.過A點的直線a從與邊AC重合的位置開始繞點A按順時針方向旋轉(zhuǎn)角θ,直線a交BC邊于點P(點P不與點B、點C重合),△BMN的邊MN始終在直線a上(點M在點N的上方),且BM=BN,連接CN.

(1)當∠BAC=∠MBN=90°時,
①如圖a,當θ=45°時,∠ANC的度數(shù)為
②如圖b,當θ≠45°時,①中的結(jié)論是否發(fā)生變化?說明理由;
(2)如圖c,當∠BAC=∠MBN≠90°時,請直接寫出∠ANC與∠BAC之間的數(shù)量關(guān)系,不必證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水果店以每箱60元新進一批蘋果共400箱,為計算總重量,從中任選30箱蘋果稱重,發(fā)現(xiàn)每箱蘋果重量都在10千克左右,現(xiàn)以10千克為標準,超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負數(shù),將稱重記錄如下:

規(guī)格

﹣0.2

﹣0.1

0

0.1

0.2

0.5

筐數(shù)

5

8

2

6

8

1

(1)求30箱蘋果的總重量

(2)若每千克蘋果的售價為10元,則賣完這批蘋果共獲利多少元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校部分團員參加社會公益活動,準備購進一批許愿瓶進行銷售,并將所得利 潤捐助給慈善機構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時間內(nèi)的銷售量y (單位:個)與
銷售單價x(單位:元/個)之間的對應關(guān)系如圖所示:

(1)y與x之間的函數(shù)關(guān)系是
(2)若許愿瓶的進價為6元/個,按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤w(單位:元)與銷售單價x(單位:元/個)之間的函數(shù)關(guān)系式;
(3)在(2)問的條件下,若許愿瓶的進貨成本不超過900元,要想獲得最大利潤,試確定這種許愿瓶的銷售單價,并求出此時的最大利潤.

查看答案和解析>>

同步練習冊答案