【題目】如圖,拋物線y=x2+2x與直線y= 交于A,B兩點(diǎn),與直線x=2交于點(diǎn)P,將拋物線沿著射線AB平移個單位.
(1)平移后的拋物線頂點(diǎn)坐標(biāo)為_______;
(2)在整個平移過程中,點(diǎn)P經(jīng)過的路程為__________.
【答案】(3,1) 9.125
【解析】
(1)抓住已知條件:平移后的拋物線的頂點(diǎn)在直線上,因此設(shè)平移后的頂點(diǎn)坐標(biāo)為:C(x,),將兩函數(shù)聯(lián)立方程組求出點(diǎn)A的坐標(biāo),再利用勾股定理建立關(guān)于x的方程,求出x的值,再根據(jù)拋物線沿著射線AB平移個單位,就可得出結(jié)果.
(2)設(shè)拋物線向右平移a個單位,則向上平移a個單位,就可得出拋物線的解析式為y=(x+1a)21+a,再求出x=2時的函數(shù)解析式,利用a的取值范圍就可得出點(diǎn)P的經(jīng)過的路程.
(1)∵拋物線沿著射線AB平移 個單位,∴平移后的拋物線的頂點(diǎn)在直線上.
設(shè)平移后的頂點(diǎn)坐標(biāo)為:C(x,).
∵
解得:,
∴點(diǎn)A(-1,-1),∴(x+1)2+(x-+1)2=()2
解得:x1=-5(舍去),x2=3.
當(dāng)x=3時,==1,∴平移后的拋物線頂點(diǎn)坐標(biāo)為(3,1).
(2)設(shè)拋物線向右平移a個單位,則向上平移a個單位,拋物線的解析式為y=(x+1a)21+a.令x=2,則y=(3a)21+a,∴y=a2a+8,∴.
∵0≤a≤3,∴y的最大值為8,最小值為.
∵a=3時,y=,∴點(diǎn)P的經(jīng)過的路程為8+1+2()=9.125.
故答案為:9.125.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P1.P2是反比例函數(shù)y=(k>0)在第一象限圖象上的兩點(diǎn),點(diǎn)A1的坐標(biāo)為(2,0),若△P1OA1與△P2A1A2均為等邊三角形.
(1)求此反比例函數(shù)的解析式;
(2)求A2點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,,若點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿折線運(yùn)動,設(shè)運(yùn)動時間為秒.
(1)若點(diǎn)恰好在的角平分線上,求的值;
(2)若為等腰三角形,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄂州市化工材料經(jīng)銷公司購進(jìn)一種化工原料若干千克,價(jià)格為每千 克30元.物價(jià)部門規(guī)定其銷售單價(jià)不高于每千克60元,不低于每千克30元.經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時 ,y=80;x=50時,y=100.在銷售過程中,每天還要支付其他費(fèi)用450元.
(1)(3分)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)(3分)求該公司銷售該原料日獲利w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式.
(3)(4分)當(dāng)銷售單價(jià)為多少元時,該公司日獲利最大?最大獲利是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑是4,點(diǎn)A,B,C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)過點(diǎn)E(10,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時,AD=4.
(1)求拋物線的函數(shù)表達(dá)式.
(2)當(dāng)t為何值時,矩形ABCD的周長有最大值?最大值是多少?
(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個交點(diǎn)G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某型號新能源純電動汽車充滿電后,蓄電池剩余電量(千瓦時)關(guān)于已行駛路程 (千米)的函數(shù)圖象.
(1)根據(jù)圖象,直接寫出蓄電池剩余電量為35千瓦時時汽車已行駛的路程,當(dāng)時,求1千瓦時的電量汽車能行駛的路程;
(2)當(dāng)時求關(guān)于的函數(shù)表達(dá)式,并計(jì)算當(dāng)汽車已行駛180千米時,蓄電池的剩余電量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC是⊙O的弦,半徑OD⊥BC,垂足為E,若BC=,OE=3;
求:(1)⊙O的半徑;
(2)陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)G在弧BD上,連接AG,交CD于點(diǎn)K,過點(diǎn)G的直線交CD延長線于點(diǎn)E,交AB延長線于點(diǎn)F,且EG=EK.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為13,CH=12,AC∥EF,求OH和FG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com