【題目】如圖,在平面直角坐標系xOy中,已知直線ly=﹣x1,雙曲線y,在l上取一點A1,過A1x軸的垂線交雙曲線于點B1,過B1y軸的垂線交l于點A2,請繼續(xù)操作并探究:過A2x軸的垂線交雙曲線于點B2,過B2y軸的垂線交l于點A3,…,這樣依次得到l上的點A1,A2A3,…,An,…記點An的橫坐標為an,若a12,則a2018_____;若要將上述操作無限次地進行下去,則a1不可能取的值是_____

【答案】; 0、﹣1

【解析】

求出a2,a3,a4,a5的值,可發(fā)現(xiàn)規(guī)律,繼而得出a2013的值,根據(jù)題意可得A1不能在x軸上,也不能在y軸上,從而可得出a1不可能取的值.

解:當a12時,B1的縱坐標為,

B1的縱坐標和A2的縱坐標相同,則A2的橫坐標為a2=﹣,

A2的橫坐標和B2的橫坐標相同,則B2的縱坐標為b2=﹣,

B2的縱坐標和A3的縱坐標相同,則A3的橫坐標為a3=﹣,

A3的橫坐標和B3的橫坐標相同,則B3的縱坐標為b3=﹣3,

B3的縱坐標和A4的縱坐標相同,則A4的橫坐標為a42,

A4的橫坐標和B4的橫坐標相同,則B4的縱坐標為b4,

即當a12時,a2=﹣,a3=﹣,a42,a5=﹣,

b1,b2=﹣,b3=﹣3,b4b5=﹣,

672…2,

∴a2018a2=﹣

A1不能在y軸上(此時找不到B1),即x≠0

A1不能在x軸上(此時A2,在y軸上,找不到B2),即y=﹣x1≠0,

解得:x≠1;

綜上可得a1不可取0、﹣1

故答案為:﹣;0、﹣1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(點A在點B的左側(cè)).

(1)求拋物線的對稱軸及線段AB的長;

(2)拋物線的頂點為P,若∠APB=120°,求頂點P的坐標及a的值;

(3)若在拋物線上存在一點N,使得∠ANB=90°,結(jié)合圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系xOy中,直線y=mx與雙曲線相交于A(﹣1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1.

(1)求m、n的值;

(2)求直線AC的解析式.

(3)點P在雙曲線上,且△POC的面積等于△ABC面積的,求點P的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D在邊AB上,以點A為圓心,線段AD的長為半徑的⊙A與邊AC相交于點EAF⊥DE,垂足為點F,AF的延長線與邊BC相交于點G,聯(lián)結(jié)GE.已知DE=10,cos∠BAG=,.求:

1⊙A的半徑AD的長;

2∠EGC的余切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC,BD交于O,EF過點OAD,BC分別交于E,F,若AB4,BC5,OE1.5,則四邊形EFCD的周長_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知點D、E、F分別為邊BC、ADCE的中點,若△ABC的面積為16,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點所對弦上一動點,點的延長線上,過點于點,連接,已知,,設(shè),兩點間的距離為,的面積為.(當點與點重合時,的值為0.)

小亮根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.

下面是小亮的探究過程,請補充完整:

1)通過取點、畫圖、測量,得到了的幾組值,如下表:

3

4

5

6

7

8

9

0

4.47

7.07

9.00

8.94

0

2)在平面直角坐標系中,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;

3)結(jié)合畫出的函數(shù)圖象,解決問題:當的面積為時,的長度約為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面上兩點A,B,給出如下定義:以點AB為圓心,AB長為半徑的圓稱為點AB確定圓.如圖為點A,B確定圓的示意圖.

1)已知點A的坐標為(-1,0),點B的坐標為(3,3),則點A,B確定圓的面積為______;

2)已知點A的坐標為(0,0),若直線yxb上只存在一個點B,使得點A,B確定圓的面積為,求點B的坐標;

3)已知點A在以Pm0)為圓心,以1為半徑的圓上,點B在直線上,若要使所有點AB確定圓的面積都不小于,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx12的圖象交x軸于A(﹣3,0),B5,0)兩點,與y軸交于點C.點D是拋物線上的一個動點.

1)求拋物線的解析式;

2)設(shè)點D的橫坐標為m,并且當mxm+5時,對應的函數(shù)值y滿足﹣m,求m的值;

3)若點D在第四象限內(nèi),過點DDEy軸交BCEDFBCF.線段EF的長度是否存在最大值?若存在,請求出這個最大值及相應點D的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案