【問(wèn)題情境】
如圖1,四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.
【探究展示】
(1)證明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
【拓展延伸】
(3)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請(qǐng)分別作出判斷,不需要證明.
(1)證明:延長(zhǎng)AE、BC交于點(diǎn)N,如圖1(1),
∵四邊形ABCD是正方形,
∴AD∥BC.
∴∠DAE=∠ENC.
∵AE平分∠DAM,
∴∠DAE=∠MAE.
∴∠ENC=∠MAE.
∴MA=MN.
在△ADE和△NCE中,
∴△ADE≌△NCE(AAS).
∴AD=NC.
∴MA=MN=NC+MC
=AD+MC.
(2)AM=DE+BM成立.
證明:過(guò)點(diǎn)A作AF⊥AE,交CB的延長(zhǎng)線于點(diǎn)F,如圖1(2)所示.
∵四邊形ABCD是正方形,
∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.
∵AF⊥AE,
∴∠FAE=90°.
∴∠FAB=90°﹣∠BAE=∠DAE.
在△ABF和△ADE中,
∴△ABF≌△ADE(ASA).
∴BF=DE,∠F=∠AED.
∵AB∥DC,
∴∠AED=∠BAE.
∵∠FAB=∠EAD=∠EAM,
∴∠AED=∠BAE=∠BAM+∠EAM
=∠BAM+∠FAB
=∠FAM.[來(lái)源:Z。xx。k.Com]
∴∠F=∠FAM.
∴AM=FM.
∴AM=FB+BM=DE+BM.
(3)①結(jié)論AM=AD+MC仍然成立.
證明:延長(zhǎng)AE、BC交于點(diǎn)P,如圖2(1),
∵四邊形ABCD是矩形,
∴AD∥BC.
∴∠DAE=∠EPC.
∵AE平分∠DAM,
∴∠DAE=∠MAE.
∴∠EPC=∠MAE.
∴MA=MP.
在△ADE和△PCE中,
∴△ADE≌△PCE(AAS).
∴AD=PC.
∴MA=MP=PC+MC
=AD+MC.
②結(jié)論AM=DE+BM不成立.
證明:假設(shè)AM=DE+BM成立.
過(guò)點(diǎn)A作AQ⊥AE,交CB的延長(zhǎng)線于點(diǎn)Q,如圖2(2)所示.
∵四邊形ABCD是矩形,
∴∠BAD=∠D=∠ABC=90°,AB∥DC.
∵AQ⊥AE,
∴∠QAE=90°.
∴∠QAB=90°﹣∠BAE=∠DAE.
∴∠Q=90°﹣∠QAB
=90°﹣∠DAE
=∠AED.
∵AB∥DC,
∴∠AED=∠BAE.
∵∠QAB=∠EAD=∠EAM,
∴∠AED=∠BAE=∠BAM+∠EAM
=∠BAM+∠QAB
=∠QAM.
∴∠Q=∠QAM.
∴AM=QM.
∴AM=QB+BM.
∵AM=DE+BM,
∴QB=DE.
在△ABQ和△ADE中,
∴△ABQ≌△ADE(AAS).
∴AB=AD.
與條件“AB≠AD“矛盾,故假設(shè)不成立.
∴AM=DE+BM不成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在大課間活動(dòng)中, 同學(xué)們積極參加體育鍛煉.小龍?jiān)谌kS機(jī)抽取一部分同學(xué)就“我最喜愛(ài)的體育項(xiàng)目”進(jìn)行了一次抽樣調(diào)查.下面是他通過(guò)收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)小龍共抽取________名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“立定跳遠(yuǎn)”部分對(duì)應(yīng)的圓心角的度數(shù)是______度;
(4)若全校共有2130名學(xué)生,請(qǐng)你估算“其他”部分的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在某監(jiān)測(cè)點(diǎn)B處望見(jiàn)一艘正在作業(yè)的漁船在南偏西15°方向的A處,若漁船沿北偏西75°方向以40海里/小時(shí)的速度航行,航行半小時(shí)后到達(dá)C處,在C處觀測(cè)到B在C的北偏東60°方向上,則B、C之間的距離為( 。
| A. | 20海里 | B. | 10海里 | C. | 20海里 | D. | 30海里 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知直線AB,CB,l在同一平面內(nèi),若AB⊥l,垂足為B,CB⊥l,垂足也為B,則符合題意的圖形可以是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系中,已知點(diǎn)O(0,0),A(1,3),將線段OA向右平移3個(gè)單位,得到線段O1A1,則點(diǎn)O1的坐標(biāo)是 ,A1的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
當(dāng)m,n是正實(shí)數(shù),且滿足m+n=mn時(shí),就稱點(diǎn)P(m,)為“完美點(diǎn)”,已知點(diǎn)A(0,5)與點(diǎn)M都在直線y=﹣x+b上,點(diǎn)B,C是“完美點(diǎn)”,且點(diǎn)B在線段AM上,若MC=,AM=4,求△MBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
由若干個(gè)相同的小正方體搭成的一個(gè)幾何體的俯視圖如圖,小正方形中的數(shù)字表示該位置的小正方體的個(gè)數(shù),則這個(gè)幾何體的主視圖是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com