精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在矩形ABCD中,點EAD的中點,不用圓規(guī)、量角器等工具,只用無刻度的直尺作圖.

1)如圖1,在BC上找點F,使點FBC的中點;

2)如圖2,連接AC,在AC上取兩點P,Q,使P,QAC的三等分點.

【答案】(1)詳見解析;(2)詳見解析.

【解析】

1)根據矩形的對角線相等且互相平分作出圖形即可;

2)根據矩形的性質和三角形中位線定理作出圖形即可.

1)如圖1,連接AC、BD交于點O,延長EOBCF,則點F即為所求.

證明如下:

ABCD是矩形,

BO=OD,ADBC,AD=BC,

∴∠EDO=FBO

∵∠EOD=FOB,

∴△EOD≌△FOB

ED=FB=AD=BC,

FBC的中點.

2)如圖2,BDACO,延長EOBCF

連接EBACP,連接DFACQ,則P、Q即為所求.

證明如下:

由(1)可得:FBC的中點,

ED=BF=AE=FC,EDBF

∴四邊形EBFD是平行四邊形,

BEFD

FC=BF,

CQ=PQ

ADBC,

∴∠EAC=FCA,∠ADQ=CFQ

BEFD,

∴∠AEP=ADQ,

∴∠AEP=CFQ

在△AEP和△CFQ中,

∵∠EAC=FCAAE=CF,∠AEP=CFQ

∴△AEP≌△CFQ,

AP=CQ,

AP=PQ=CQ,

PQAC的三等分點.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】把函數C1yax22ax3aa≠0)的圖象繞點Pm,0)旋轉180°,得到新函數C2的圖象,我們稱C2C1關于點P的相關函數.C2的圖象的對稱軸與x軸交點坐標為(t,0).

1)填空:t的值為   (用含m的代數式表示)

2)若a=﹣1,當xt時,函數C1的最大值為y1,最小值為y2,且y1y21,求C2的解析式;

3)當m0時,C2的圖象與x軸相交于A,B兩點(點A在點B的右側).與y軸相交于點D.把線段AD原點O逆時針旋轉90°,得到它的對應線段AD,若線ADC2的圖象有公共點,結合函數圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系內,已知點A0,6)、點B8,0),動點P從點A開始在線段AO上以每秒1個單位長度的速度向點O移動,同時動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A移動,設點P、Q移動的時間為t秒.

1求直線AB的解析式;

2t為何值時,△APQ與△AOB相似?

3t為何值時,△APQ的面積為個平方單位?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線經過點和點,頂點為.

1)求這條拋物線的表達式和頂點的坐標;

2)點關于拋物線對稱軸的對應點為點,聯(lián)結,求的正切值;

3)將拋物線向上平移個單位,使頂點落在點處,點落在點處,如果,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某養(yǎng)殖場計劃用96米的竹籬笆圍成如圖所示的①、②、③三個養(yǎng)殖區(qū)域,其中區(qū)域①是正方形,區(qū)域②和③是矩形,且AGBG32.設BG的長為2x米.

1)用含x的代數式表示DF

2x為何值時,區(qū)域③的面積為180平方米;

3x為何值時,區(qū)域③的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數yax2+bx+ca#0)的圖象的頂點在第一象限,且過點(0,1)和(﹣10).下列結論:①ab0;②b24ac;③0b1;④當x<﹣1時,y0.其中正確結論的個數是( 。

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料,關于x的方程:x+c+的解是x1c,x2xc的解是x1c,x2=﹣;x+c+的解是x1c,x2;x+c+的解是x1c,x2;……

1)請觀察上述方程與解的特征,比較關于x的方程x+c+a≠0)與它們的關系猜想它的解是什么,并利用方程的解的概念進行驗證.

2)可以直接利用(1)的結論,解關于x的方程:x+a+

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明經過市場調查,整理出他媽媽商店里一種商品在第天的銷售量的相關信息如下表:

時間第(天)

售價(元/件)

50

每天銷量(件)

已知該商品的進價為每件20元,設銷售該商品的每天利潤為.

1)求出的函數關系式;

2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?

3)該商品在銷售過程中,共有多少天每天銷售利潤不低于2400元?請直接寫出結果.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某地盛產櫻桃,一年一度的櫻桃節(jié)期間,很多果園推出了免費品嘗和優(yōu)惠采摘活動,其中甲、乙兩家果園的櫻桃品質相同,銷售價格也相同,但推出了不同的采摘方案:

甲園

游客進園需購買人的門票,采摘的櫻桃六折優(yōu)惠

乙園

游客進園不需購買門票,采摘的櫻桃在一定數量以內按原價購買,超過部分打折購買

小明和爸爸、媽媽在櫻桃節(jié)期間也來采摘櫻桃,若設他們的櫻桃采摘量為(千克)(出園時將自己采摘的櫻桃全部購買),在甲采摘園所需總費用為(元)在乙采摘園所需總費用為(元),圖中的折線表示之間的函數關系.

1)①甲、乙兩果園的櫻桃單價為_____________千克;

②直接寫出的函數表達式:_________________,并在圖中補畫出的函數圖象;

2)求出之間的函數關系式;

3)若小明一家當天所采摘的櫻桃不少于千克,選擇哪個采摘園更劃算?請說明理由.

查看答案和解析>>

同步練習冊答案