【題目】閱讀下列材料,關(guān)于x的方程:x+c+的解是x1cx2;xc的解是x1c,x2=﹣;x+c+的解是x1c,x2;x+c+的解是x1c,x2;……

1)請觀察上述方程與解的特征,比較關(guān)于x的方程x+c+a≠0)與它們的關(guān)系猜想它的解是什么,并利用方程的解的概念進行驗證.

2)可以直接利用(1)的結(jié)論,解關(guān)于x的方程:x+a+

【答案】1)方程的解為x1c,x2,驗證見解析;(2xax都為分式方程的解.

【解析】

1)根據(jù)材料即可判斷方程的解,然后代入到方程的左右兩邊檢驗即可;

2)將方程左右兩邊同時減去3,變?yōu)轭}干中的形式,即可得出答案.

1)方程的解為x1c,x2,

驗證:當(dāng)xc時,

∵左邊=c+,右邊=c+,

∴左邊=右邊,

xcx+c+的解,

同理可得:xx+c+的解;

2)方程整理得:(x3+=(a3+,

解得:x3a3x3,即xax,

經(jīng)檢驗xax都為分式方程的解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線的圖象與x軸交于,B兩點,與y軸交于點,對稱軸x軸交于點H.

1)求拋物線的函數(shù)表達式

2)直線y軸交于點E,與拋物線交于點P,Q(點Py軸左側(cè),點Q y軸右側(cè)),連接CP,CQ,若的面積為,求點PQ的坐標(biāo).

3)在(2)的條件下,連接ACPQG,在對稱軸上是否存在一點K,連接GK,將線段GK繞點G逆時針旋轉(zhuǎn)90°,使點K恰好落在拋物線上,若存在,請直接寫出點K的坐標(biāo)不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合實踐:

問題情境

數(shù)學(xué)活動課上,老師和同學(xué)們在正方形中利用旋轉(zhuǎn)變換探究線段之間的關(guān)系探究過程如下所示:如圖I,在正方形中,點為邊的中點.以點為旋轉(zhuǎn)中心,順時針方向旋轉(zhuǎn),當(dāng)點的對應(yīng)點落在邊上時,連接.

興趣小組發(fā)現(xiàn)的結(jié)論是:;

卓越小組發(fā)現(xiàn)的結(jié)論是:.

解決問題

(1)請你證明興趣小組卓越小組發(fā)現(xiàn)的結(jié)論;

拓展探究

證明完興趣小組卓越小組發(fā)現(xiàn)的結(jié)論后,智慧小組提出如下問題:如圖2,連接,若正方形的邊長為,求出的長度.

(2)請你幫助智慧小組寫出線段的長度.(直接寫出結(jié)論即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點EAD的中點,不用圓規(guī)、量角器等工具,只用無刻度的直尺作圖.

1)如圖1,在BC上找點F,使點FBC的中點;

2)如圖2,連接AC,在AC上取兩點P,Q,使P,QAC的三等分點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖二次函數(shù)的圖像交軸于、,交軸于,直線平行于周,與拋物線另一個交點為.

1)求函數(shù)的解析式;

2)若軸上的動點,是拋物線上的動點,求使以、、為頂點的四邊形是平行四邊形的的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一矩形紙片OABC放在直角坐標(biāo)系中,O為原點Cx軸上,OA5OC13,如圖所示,在OA上取一點E,將EOC沿EC折疊,使O點落在AB邊上的D點,則E點坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,記直線y=x+1為l.點A1是直線l與y軸的交點,以A1O為邊作正方形A1OC1B1,使點C1落在在x軸正半軸上,作射線C1B1交直線l于點A2,以A2C1為邊作正方形A2C1C2B2,使點C2落在在x軸正半軸上,依次作下去,得到如圖所示的圖形.則點B4的坐標(biāo)是 ,點Bn的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(/)與每天銷售量y()之間滿足如圖所示的關(guān)系:

(1)求出yx之間的函數(shù)關(guān)系式;

(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負(fù)責(zé)人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案