試題分析:(1)利用旋轉(zhuǎn)的性質(zhì)得出A′(-1,0),B′(0,2),再利用待定系數(shù)法求二次函數(shù)解析式即可;
(2)利用S
四邊形PB′A′B=S
△B′OA′+S
△PB′O+S
△POB,再假設(shè)四邊形PB′A′B的面積是△A′B′O面積的4倍,得出一元二次方程,得出P點坐標即可;
(3)利用P點坐標以及B點坐標即可得出四邊形PB′A′B為等腰梯形,利用等腰梯形性質(zhì)得出答案即可.
試題解析:(1)(1)△A′B′O是由△ABO繞原點O逆時針旋轉(zhuǎn)90°得到的,
又A(0,1),B(2,0),O(0,0),
∴A′(-1,0),B′(0,2)
設(shè)拋物線的解析式為:y=ax
2+bx+c(a≠0),
∵拋物線經(jīng)過點A′、B′、B,
∴
,解得:
,
∴滿足條件的拋物線的解析式為y=-x
2+x+2.
(2)∵P為第一象限內(nèi)拋物線上的一動點,
設(shè)P(x,y),則x>0,y>0,P點坐標滿足y=-x
2+x+2.
連接PB,PO,PB′,
∴S
四邊形PB′A′B=S
△B′OA′+S
△PB′O+S
△POB,=
×1×2+
×2×x+
×2×y=x+(-x
2+x+2)+1=-x
2+2x+3.
∵A′O=1,B′O=2,∴△A′B′O面積為:
×1×2=1,
假設(shè)四邊形PB′A′B的面積是△A′B′O面積的4倍,則
4=-x
2+2x+3,
即x
2-2x+1=0,
解得:x
1=x
2=1,
此時y=-1
2+1+2=2,即P(1,2).
∴存在點P(1,2),使四邊形PB′A′B的面積是△A′B′O面積的4倍.
(3)四邊形PB′A′B為等腰梯形,答案不唯一,①等腰梯形同一底上的兩個內(nèi)角相等;②等腰梯形對角線相等;③等腰梯形上底與下底平行;④等腰梯形兩腰相等.
考點: 二次函數(shù)綜合題.