精英家教網 > 初中數學 > 題目詳情
已知拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0)
(1)求拋物線與x軸的另一個交點B的坐標;
(2)D是拋物線與y軸的交點,C是拋物線上的一點,且以AB為一底的梯形ABCD的面積為9,求此拋物線的函數關系式.
分析:(1)拋物線是軸對稱圖形,與x軸的交點一定關于對稱軸對稱,根據對稱性就可以求出B的坐標.
(2)梯形ABCD一定關于拋物線的對稱軸對稱,根據梯形的面積就可以求出梯形的高,即C,D的點的縱坐標的絕對值,根據待定系數法就可以求出二次函數的解析式.
解答:(1)拋物線的對稱軸是x=
-4a
2a
=-2,點A,B一定關于對稱軸對稱,
所以另一個交點為B(-3,0).

(2)∵A,B的坐標分別是(-1,0),(-3,0),
∴AB=2,
因為對稱軸為x=-2,
所以CD=4;
設梯形的高是h.
因為S梯形ABCD=
1
2
×(2+4)h=9,
所以h=3即|-t|=3,
∴t=±3,
當t=3時,把(-1,0)代入解析式得到a-4a+3=0,
解得a=1,
當t=-3時,把(-1,0)代入y=ax2+4ax+t
得到a=-1,
所以a=1或a=-1,
所以解析式為y=x2+4x+3;或y=-x2-4x-3,
點評:本題主要考查了拋物線的性質,注意拋物線是軸對稱圖形,要求同學們熟練掌握待定系數法求函數解析式的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數學 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標為(2,-3),那么該拋物線有(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當x≥1時y1的取值范圍.

查看答案和解析>>

同步練習冊答案