【題目】如圖,在四邊形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,連結(jié)AC、BD.在四邊形ABCD的外部以BC為一邊作等邊△BCE,連結(jié)AE.
(1)求證:BD=AE;
(2)若AB=3,BC=4,求BD的長.
【答案】(1)證明見解析;(2)AE=5
【解析】試題分析:(1)由∠ADC=60°,AD=DC,易得△ADC是等邊三角形,又由△BCE是等邊三角形,可證得△BDC≌△EAC(SAS),即可得BD=AE;
(2)由△BCE是等邊三角形,∠ABC=30°,易得∠ABE=90°,然后由勾股定理求得AE的長,即可求得BD的長.
試題解析:(1)∵在△ADC中,AD=DC,∠ADC=60°,
∴△ADC是等邊三角形,
∴DC=AC,∠DCA=60°,
又∵△BCE是等邊三角形,
∴CB=CE,∠BCE=60°,
∴∠DCA+∠ACB=∠ECB+∠ACB,
即∠DCB=∠ACE,
∴△BDC≌△EAC(SAS),
∴BD=AE;
(2)∵△BCE是等邊三角形,
∴BE=BC=4,∠CBE=60°.
∵∠ABC=30°,
∴∠ABE=90°.
在Rt△ABE中,AE===5
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、C分別在x軸上、y軸上,CB//OA,OA=8,若點B的坐標為(a,b),且b=.
(1)直接寫出點A、B、C的坐標;
(2)若動點P從原點O出發(fā)沿x軸以每秒2個單位長度的速度向右運動,當直線PC把四邊形OABC分成面積相等的兩部分停止運動,求P點運動時間;
(3)在(2)的條件下,在y軸上是否存在一點Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=8cm,AC=6cm,點E是BC的中點,動點P從A點出發(fā),先以每秒2cm的速度沿A→C運動,然后以1cm/s的速度沿C→B運動.若設點P運動的時間是t秒,那么當t=_____________,△APE的面積等于6.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設, ,……, ,(n為正整數(shù))
(1)試說明是8的倍數(shù);
(2)若△ABC的三條邊長分別為、、(為正整數(shù))
①求的取值范圍.
②是否存在這樣的,使得△ABC的周長為一個完全平方數(shù),若存在,試舉出一例,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中,AC=BC, ,過點C作CD⊥AB于點D,點E是AB邊上一動點(不同于點A、B),連接CE,過點B作CE的垂線交直線CE于點F,交直線CD于點G(如圖1).
(1)求證:BG=CE;
(2)若點E運動到線段BD上時(如圖2),試猜想BG、CE的數(shù)量關系是否發(fā)生變化?請直接寫出你的結(jié)論;
(3)過點A作AH垂直于直線CE垂足為點H并交CD的延長線于點M(如圖3),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標軸交于A,B,C三點,其中點A的坐標為(﹣3,0),點B的坐標為(4,0),連接AC,BC.動點P從點A出發(fā),在線段AC上以每秒1個單位長度的速度向點C作勻速運動;同時,動點Q從點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B作勻速運動,當其中一點到達終點時,另一點隨之停止運動,設運動時間為t秒.連接PQ.
(1)填空:b= ,c= ;
(2)在點P,Q運動過程中,△APQ可能是直角三角形嗎?請說明理由;
(3)在x軸下方,該二次函數(shù)的圖象上是否存在點M,使△PQM是以點P為直角頂點的等腰直角三角形?若存在,請求出運動時間t;若不存在,請說明理由;
(4)如圖②,點N的坐標為(﹣,0),線段PQ的中點為H,連接NH,當點Q關于直線NH的對稱點Q′恰好落在線段BC上時,請直接寫出點Q′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在校園藝術節(jié)活動中,參加攝影大賽的作品共有98件,比上屆參賽作品增加了40%,則上屆參賽作品有( 。
A.39件B.60件C.70件D.71件
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一架2.5米長的梯子斜立在豎直的墻上,此時梯足B距底端O為0.7米。(1)求OA的長度。(2)如果梯子頂端下滑0.4米,則梯子將滑出多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com