【題目】如圖,直線l的解析式為y=﹣x+b,它與坐標(biāo)軸分別交于A、B兩點(diǎn),其中點(diǎn)B坐標(biāo)為(0,4).

(1)求出A點(diǎn)的坐標(biāo);

(2)在第一象限的角平分線上是否存在點(diǎn)Q使得∠QBA=90°?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

(3)動(dòng)點(diǎn)Cy軸上的點(diǎn)(0,10)出發(fā),以每秒1cm的速度向負(fù)半軸運(yùn)動(dòng),求出點(diǎn)C運(yùn)動(dòng)所有的時(shí)間t,使得△ABC為軸對(duì)稱圖形(直接寫答案即可)

【答案】(1)A(3,0);(2)存在.Q(16,16);(3)當(dāng)C點(diǎn)運(yùn)動(dòng)1秒、秒、11秒、14秒時(shí),能使ABC為軸對(duì)稱圖形.

【解析】

(1)利用點(diǎn)B代入直線,求出直線解析式,然后求直線與x軸交點(diǎn)坐標(biāo);

(2)點(diǎn)Q在第一象限角平分線上,設(shè)Q(x,x),已知給出了指定角,利用勾股定理列方程,即可求出點(diǎn)Q的標(biāo);

(3)求ABC為軸對(duì)稱圖形,實(shí)質(zhì)是求動(dòng)點(diǎn)C,使ABC為等腰三角形,根據(jù)等腰三角形性質(zhì)分類討論即可求出點(diǎn)的坐標(biāo),利用點(diǎn)的坐標(biāo)求出運(yùn)動(dòng)時(shí)間.

(1)將點(diǎn)B(0,4)代入直線l的解析式得:

b=4,

∴直線l的解析式為:y=x+4,

令y=0得:x=3,

∴A(3,0).

(2)存在.

Q在第一象限的角平分線上,

設(shè)Q(x,x),

根據(jù)勾股定理:

QB2+BA2=QA2,

x2+(x﹣4)2+52=x2+(x﹣3)2

解得x=16,

故Q(16,16).

(3)能使ABC為軸對(duì)稱圖形,

則得:ABC為等腰三角形,

當(dāng)AB=BC時(shí),

C(0,9)或(0,﹣1),

此時(shí)C點(diǎn)運(yùn)動(dòng)1秒或11秒,

當(dāng)AB=AC時(shí),

C(0,﹣4),

此時(shí)C點(diǎn)運(yùn)動(dòng)14秒,

當(dāng)AC=BC時(shí),

C(0,),

此時(shí)C點(diǎn)運(yùn)動(dòng) 秒.

綜上所述:當(dāng)C點(diǎn)運(yùn)動(dòng)1秒、秒、11秒、14秒時(shí),能使ABC為軸對(duì)稱圖形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,點(diǎn)A、B、C、D在一條直線上,填寫下列空格:

因?yàn)椤?/span>1=∠E已知),所以______ // ______ .

因?yàn)?/span>CE//DF已知),所以∠1=∠ ______ ,所以∠E=∠ ______ .

2說出1的推理中應(yīng)用了哪兩個(gè)互逆的真命題?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:2sin60°+|﹣3|﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知有理數(shù)a,b,c在數(shù)軸上所對(duì)應(yīng)的點(diǎn)分別是A,BC三點(diǎn),且a,b滿足,①多項(xiàng)式x|a|+a2x+7是關(guān)于x的二次三項(xiàng)式:②(b12+|c5|0

1)請(qǐng)?jiān)趫D1的數(shù)軸上描出A,B,C三點(diǎn),并直接寫出a,b,c三數(shù)之間的大小關(guān)系   “<”連接);

2)點(diǎn)P為數(shù)軸上C點(diǎn)右側(cè)一點(diǎn),且點(diǎn)PA點(diǎn)的距離是到C點(diǎn)距高的2倍,求點(diǎn)P在數(shù)軸上所對(duì)應(yīng)的有理數(shù);

3)點(diǎn)A在數(shù)軸上以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí)點(diǎn)B和點(diǎn)C在數(shù)軸上分別以每秒m個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng)(其中m4),若在整個(gè)運(yùn)動(dòng)的過程中,點(diǎn)B到點(diǎn)A的距離與點(diǎn)B到點(diǎn)C的距離差始終不變,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湘西自治州風(fēng)景優(yōu)美,物產(chǎn)豐富,一外地游客到某特產(chǎn)專營(yíng)店,準(zhǔn)備購(gòu)買精加工的豆腐乳和獼猴桃果汁兩種盒裝特產(chǎn)若購(gòu)買3盒豆腐乳和2盒獼猴桃果汁共需180元;購(gòu)買1盒豆腐乳和3盒獼猴桃果汁共需165元

1請(qǐng)分別求出每盒豆腐乳和每盒獼猴桃果汁的價(jià)格;

2該游客購(gòu)買了4盒豆腐乳和2盒獼猴桃果汁,共需多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市開展了“雷鋒精神你我傳承,關(guān)愛老人從我做起”的主題活動(dòng),隨機(jī)調(diào)查了本市部分老人與子女同住情況,根據(jù)收集到的數(shù)據(jù),繪制成如下統(tǒng)計(jì)圖表(不完整) 老人與子女同住情況百分比統(tǒng)計(jì)表

老人與子女
同住情況

同住

不同住
(子女在本市)

不同住
(子女在市外)

其他

A

50%

B

5%

根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

(1)求本次調(diào)查的老人的總數(shù)及a、b的值;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;(畫在答卷相對(duì)應(yīng)的圖上)
(3)若該市共有老人約15萬人,請(qǐng)估計(jì)該市與子女“同住”的老人總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)研制的產(chǎn)品今年第一季度的銷售數(shù)量為300件,第二季度由于市場(chǎng)等因素,銷售數(shù)量比第一季度減少了4%,從第三季度起,該企業(yè)搞了一系列的促銷活動(dòng),銷售數(shù)量又有所提升,第四季度的銷售量達(dá)到了450件,假設(shè)第三季度與第四季度銷售數(shù)量的增長(zhǎng)率相同,求這個(gè)增長(zhǎng)率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)某市在道路改造過程中,需要鋪設(shè)一條長(zhǎng)為1000米的管道,決定由甲、乙兩個(gè)工程隊(duì)來完成這一工程.已知甲工程隊(duì)比乙工程隊(duì)每天能多鋪設(shè)20米,且甲工程隊(duì)鋪設(shè)350米所用的天數(shù)與乙工程隊(duì)鋪設(shè)250米所用的天數(shù)相同.

(1)甲、乙工程隊(duì)每天各能鋪設(shè)多少米?

(2)如果要求完成該項(xiàng)工程的工期不超過10天,那么為兩工程隊(duì)分配工程量(以百米為單位)的方案有幾種?請(qǐng)你幫助設(shè)計(jì)出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點(diǎn)D在邊AB上.

(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;

(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EHAB于點(diǎn)H,過點(diǎn)EGEAB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案