將兩個(gè)全等的等腰直角三角形擺成如圖所示的樣子(圖中的所有點(diǎn)、線都在同一平面內(nèi)),請(qǐng)?jiān)趫D中找出兩對(duì)相似而不全等的三角形,并說(shuō)明它們相似的理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,它們的斜邊長(zhǎng)為2,若△ABC固定不動(dòng),△AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),設(shè)BE=m,CD=n.
(1)請(qǐng)?jiān)趫D中找出兩對(duì)相似而不全等的三角形,并選取其中一對(duì)進(jìn)行證明;
(2)求m與n的函數(shù)關(guān)系式,直接寫出自變量n的取值范圍;
(3)以△ABC的斜邊BC所在的直線為x軸,BC邊上的高所在的直線為y軸,建立平面直角坐標(biāo)系(如圖2).在邊BC上找一點(diǎn)D,使BD=CE,求出D點(diǎn)的坐標(biāo),并通過(guò)計(jì)算驗(yàn)證BD2+CE2=DE2
(4)在旋轉(zhuǎn)過(guò)程中,(3)中的等量關(guān)系BD2+CE2=DE2是否始終成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形ABC和ADE擺放在一起,A為公共頂點(diǎn),∠BAC=∠ADE=90°,它們的斜邊長(zhǎng)為2,若△ABC固定不動(dòng),△ADE繞點(diǎn)A旋轉(zhuǎn),AE、AD與邊BC的交點(diǎn)分別為F、G (點(diǎn)F不與點(diǎn)C重合,點(diǎn)G不與點(diǎn)B重合),設(shè)BF=a,CG=b.
(1)請(qǐng)?jiān)趫D(1)中找出兩對(duì)相似但不全等的三角形,并選取其中一對(duì)進(jìn)行證明.
(2)求b與a的函數(shù)關(guān)系式,直接寫出自變量a的取值范圍.
(3)以△ABC的斜邊BC所在的直線為x軸,BC邊上的高所在的直線為y軸,建立平面直角坐標(biāo)系(如圖2).若BG=CF,求出點(diǎn)G的坐標(biāo),猜想線段BG、FG和CF之間的關(guān)系,并通過(guò)計(jì)算加以驗(yàn)證.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,它們的斜邊長(zhǎng)為4.若△ABC固定不動(dòng),△AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),設(shè)BE=a,CD=b.
(1)請(qǐng)?jiān)趫D中找出兩對(duì)相似而不全等的三角形,并選取其中一對(duì)進(jìn)行證明;
(2)求a•b的值;
(3)在旋轉(zhuǎn)過(guò)程中,當(dāng)△AFG旋轉(zhuǎn)到如圖2的位置時(shí),AG與BC交于點(diǎn)E,AF的延長(zhǎng)線與CB的延長(zhǎng)線交于點(diǎn)D,那么a•b的值是否發(fā)生了變化?為什么?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,它們的斜邊長(zhǎng)為2,若△ABC固定不動(dòng),△AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),設(shè)BE=m,CD=n.
(1)△ABE與△DCA是否相似?請(qǐng)加以說(shuō)明.
(2)求m與n的函數(shù)關(guān)系式,直接寫出自變量n的取值范圍.
(3)當(dāng)BE=CD時(shí),分別求出線段BD、CE、DE的長(zhǎng),并通過(guò)計(jì)算驗(yàn)證BD2+CE2=DE2
(4)在旋轉(zhuǎn)過(guò)程中,(3)中的等量關(guān)系BD2+CE2=DE2是否始終成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)嘗試解決以下問(wèn)題:
(1)如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠
FAE
FAE

又AG=AE,AF=AF
∴△GAF≌
△EAF
△EAF

GF
GF
=EF,故DE+BF=EF.
(2)運(yùn)用(1)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點(diǎn),且∠BAE=45°,DE=4,求BE的長(zhǎng).
(3)類比(1)證明思想完成下列問(wèn)題:在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,若△ABC固定不動(dòng),△AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),在旋轉(zhuǎn)過(guò)程中,等式BD2+CE2=DE2始終成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案