已知:直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)C為x軸上一點(diǎn),AC=1,且OC<OA.拋物線經(jīng)過點(diǎn)A、B、C.
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)D的坐標(biāo)為(-3,0),點(diǎn)P為線段AB上一點(diǎn),當(dāng)銳角∠PDO的正切值為時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,該拋物線上的一點(diǎn)E在x軸下方,當(dāng)△ADE的面積等于四邊形APCE的面積時(shí),求點(diǎn)E的坐標(biāo).
(1);(2)P(1,2);(3)
【解析】
試題分析:(1)先求得直線交x軸、y軸的交點(diǎn)A、B的坐標(biāo),即可求得點(diǎn)C的坐標(biāo),最后根據(jù)點(diǎn)A、B、C在拋物線上,即可求得結(jié)果;
(2)由銳角∠PDO的正切值為,得,即可證得△ABO∽△ADP,根據(jù)相似三角形的性質(zhì)可得AP的長(zhǎng),過點(diǎn)P作于點(diǎn)F,可證PF∥BO,即可證得,從而求得結(jié)果;
(3)設(shè)點(diǎn)E的縱坐標(biāo)為m(m<0),根據(jù)三角形的面積公式可得,即可得到,由即可列方程求解.
(1)易得:A(2,0),B(0,4)
∵AC=1且OC<OA
∴點(diǎn)C在線段OA上
∴C(1,0)
∵A(2,0),B(0,4),C(1,0)在拋物線上,
∴,解得
∴所求拋物線的表達(dá)式為;
(2)∵銳角∠PDO的正切值為,(為銳角)
∴,
∵點(diǎn)P為線段AB上一點(diǎn),
∴
∴△ABO∽△ADP
∴,
又AO=2,AB=,AD=5
∴
過點(diǎn)P作于點(diǎn)F,可證PF∥BO,
∴
可得PF=2,即點(diǎn)P的縱坐標(biāo)是2.
∴可得P(1,2);
(3)設(shè)點(diǎn)E的縱坐標(biāo)為m(m<0),
∴
∵P(1,2),
∴
由得,解得
∴點(diǎn)E .
考點(diǎn):二次函數(shù)的綜合題
點(diǎn)評(píng):此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:貴州省中考真題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖已知:直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=ax2+bx+c經(jīng)過A、B、C(1,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)D的坐標(biāo)為(-1,0),在直線上有一點(diǎn)P,使ΔABO與ΔADP相似,求出點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在x軸下方的拋物線上,是否存在點(diǎn)E,使ΔADE的面積等于四邊形APCE的面積?如果存在,請(qǐng)求出點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖已知:直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=ax2+bx+c經(jīng)過A、B、C(1,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)D的坐標(biāo)為(-1,0),在直線上有一點(diǎn)P,使ΔABO與ΔADP相似,求出點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在x軸下方的拋物線上,是否存在點(diǎn)E,使ΔADE的面積等于四邊形APCE的面積?如果存在,請(qǐng)求出點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(貴州銅仁卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,已知:直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=ax2+bx+c經(jīng)過A、B、C(1,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)D的坐標(biāo)為(-1,0),在直線上有一點(diǎn)P,使ΔABO與ΔADP相似,求出點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在x軸下方的拋物線上,是否存在點(diǎn)E,使ΔADE的面積等于四邊形APCE的面積?如果存在,請(qǐng)求出點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(貴州卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,已知:直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=ax2+bx+c經(jīng)過A、B、C(1,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)D的坐標(biāo)為(-1,0),在直線上有一點(diǎn)P,使ΔABO與ΔADP相似,求出點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在x軸下方的拋物線上,是否存在點(diǎn)E,使ΔADE的面積等于四邊形APCE的面積?如果存在,請(qǐng)求出點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com