【題目】(1)用配方法解方程:x2-2x-2=0;(2)已知關(guān)于x的方程(m-2)x2+(m-2)x-1=0有兩個相等的實數(shù)根,求m的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的頂點(diǎn)和對稱中心在反比例函數(shù)上,若矩形的面積為8,則的值為( )
A. 4B. C. D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角坐標(biāo)系中,一次函數(shù)的圖象與軸交于點(diǎn),與一次函數(shù)的圖象交于點(diǎn).
(1)求的值及的表達(dá)式;
(2)直線與軸交于點(diǎn),直線與y軸交于點(diǎn),求四邊形的面積;
(3)如圖2,已知矩形,,,,矩形的邊在軸上平移,若矩形與直線或有交點(diǎn),直接寫出的取值范圍,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中, , ,將矩形沿直線EF折疊.使得點(diǎn)A恰好落在BC邊上的點(diǎn)G處,且點(diǎn)E、F分別在邊AB、AD上(含端點(diǎn)),連接CF.
(1)當(dāng) 時,求AE的長;
(2)當(dāng)AF取得最小值時,求折痕EF的長;
(3)連接CF,當(dāng) 是以CG為底的等腰三角形時,直接寫出BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題)如圖①,在a×b×c(長×寬×高,其中a,b,c為正整數(shù))個小立方塊組成的長方體中,長方體的個數(shù)是多少?
(探究)
探究一:
(1)如圖②,在2×1×1個小立方塊組成的長方體中,棱AB上共有1+2==3條線段,棱AC,AD上分別只有1條線段,則圖中長方體的個數(shù)為3×1×1=3.
(2)如圖③,在3×1×1個小立方塊組成的長方體中,棱AB上共有1+2+3==6條線段,棱AC,AD上分別只有1條線段,則圖中長方體的個數(shù)為6×1×1=6.
(3)依此類推,如圖④,在a×1×1個小立方塊組成的長方體中,棱AB上共有1+2+…+a=線段,棱AC,AD上分別只有1條線段,則圖中長方體的個數(shù)為______.
探究二:
(4)如圖⑤,在a×2×1個小立方塊組成的長方體中,棱AB上有條線段,棱AC上有1+2==3條線段,棱AD上只有1條線段,則圖中長方體的個數(shù)為×3×1=.
(5)如圖⑥,在a×3×1個小立方塊組成的長方體中,棱AB上有條線段,棱AC上有1+2+3==6條線段,棱AD上只有1條線段,則圖中長方體的個數(shù)為______.
(6)依此類推,如圖⑦,在a×b×1個小立方塊組成的長方體中,長方體的個數(shù)為______.
探究三:
(7)如圖⑧,在以a×b×2個小立方塊組成的長方體中,棱AB上有條線段,棱AC上有
條線段,棱AD上有1+2==3條線段,則圖中長方體的個數(shù)為××3=.
(8)如圖⑨,在a×b×3個小立方塊組成的長方體中,棱AB上有條線段,棱AC上有條線段,棱AD上有1+2+3==6條線段,則圖中長方體的個數(shù)為______.
(結(jié)論)如圖①,在a×b×c個小立方塊組成的長方體中,長方體的個數(shù)為______.
(應(yīng)用)在2×3×4個小立方塊組成的長方體中,長方體的個數(shù)為______.
(拓展)
如果在若干個小立方塊組成的正方體中共有1000個長方體,那么組成這個正方體的小立方塊的個數(shù)是多少?請通過計算說明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過點(diǎn),且對稱軸為直線.有四個結(jié)論:①;②;③;④若,則時的函數(shù)值小于時的函數(shù)值.其中正確的結(jié)論是( )
A. ①②B. ②③C. ①④D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).以A為頂點(diǎn)的拋物線過點(diǎn)C,且對稱軸交x軸于點(diǎn)B,連結(jié)EC,AC,點(diǎn)P、Q為動點(diǎn),設(shè)運(yùn)動時間為t秒。
(1)直接寫出A點(diǎn)坐標(biāo),并求出該拋物線的解析式;
(2)在圖1中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個單位/秒的速度運(yùn)動,同時點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個單位/秒的速度運(yùn)動,當(dāng)一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)隨之停止運(yùn)動,當(dāng)t為何值時,為直角三角形?
(3)在圖2中,若點(diǎn)P在對稱軸上從點(diǎn)B開始向點(diǎn)A以2個單位/秒的速度運(yùn)動,過點(diǎn)P作,交AC于點(diǎn)F,過點(diǎn)F作于點(diǎn)G,交拋物線于點(diǎn)Q,連結(jié)AQ,CQ.當(dāng)t為何值時,的面積最大?最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com