【題目】如圖 E ABC 的內(nèi)心,AE 的延長線和ABC 的外接圓相交于點 D, BE

(1) 若∠CBD=35°,求∠BAC 及∠BEC 的度數(shù)

(2) 求證DEDB

【答案】(1) 125°;(2)見詳解.

【解析】

(1)根據(jù)三角形的內(nèi)心是三條角平分線的交點,得到∠BAC=2∠CAD,∠ABC=2∠EBC,∠ACB=∠ECB,再用三角形內(nèi)角和求出∠BEC;

(2)由三角形的內(nèi)心E得到∠BAD=∠CAD,∠EBA=∠EBC,經(jīng)過等量代換得∠DEB=∠DBE,所以DE=DB.

(1)在外接圓中,∵∠CBD=35°,

∵∠CAD=35°,

∵點E是△ABC的內(nèi)心,

∴∠BAC=2∠CAD =70°,

∴∠EBC+∠ECB=(180°-70°)÷2=55°,

∴∠BEC=180°-55°=125°.

(2) 證明:∵E是△ABC的內(nèi)心,

∴∠BAD=∠CAD,∠EBA=∠EBC,

∵∠DEB=∠BAD +∠EBA,∠DBE=∠EBC +∠CBD,∠CBD =∠CAD,

∴∠DEB=∠DBE,

∴DE=DB.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是一塊邊長為4米的正方形苗圃,園林部門將其改造為矩形的形狀,其中點邊上,點的延長線上, 設(shè)的長為米,改造后苗圃的面積為平方米.

(1) 之間的函數(shù)關(guān)系式為 (不需寫自變量的取值范圍);

(2)根據(jù)改造方案,改造后的矩形苗圃的面積與原正方形苗圃的面積相等,請問此時的長為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在航線l的兩側(cè)分別有觀測點A和B,點B到航線l的距離BD為4km,點A位于點B北偏西60°方向且與B相距20km處.現(xiàn)有一艘輪船從位于點A南偏東74°方向的C處,沿該航線自東向西航行至觀測點A的正南方向E處.求這艘輪船的航行路程CE的長度.(結(jié)果精確到0.1km)(參考數(shù)據(jù):≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程ax2+bx=0 (a≠0)的一個根是x=2018,,則方程a(x+2)2+bx+2b=0的根是___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系O中的點P⊙C,給出如下定義:若⊙C上存在兩個點M,N,使得∠MPN=60°,則稱P⊙C 的關(guān)聯(lián)點。已知點D(,),E(0,-2),F(xiàn)(,0)

(1)當(dāng)⊙O的半徑為1時,

在點O,D,E,F(xiàn)中,⊙O的關(guān)聯(lián)點是______ ____;

②如果G(0,t)是⊙O的關(guān)聯(lián)點,則t的取值范圍是 ;

(2)如果線段EF上每一個點都是⊙O的關(guān)聯(lián)點,那么⊙O的半徑最小為 ;

(3)Rt⊿ABC中,∠C=90,BC=8,∠A=30,⊙P的半徑為1,當(dāng)點P運動時,始終確保⊿ABC的三條邊中至少有一條邊上恰好有唯一的⊙P的關(guān)聯(lián)點。請你畫出點P所走過的路線圍成的圖形的示意圖,并在下面橫線上直接寫出它的總長。

答:點P經(jīng)過的路線圍成的圖形的總長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).

(1)求證:△ADE≌△CBF;

(2)求證:四邊形BFDE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.

(1)若該方程有兩個實數(shù)根,求m的最小整數(shù)值;

(2)若方程的兩個實數(shù)根為x1,x2,且(x1x22+m2=21,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場試銷一種成本為60/件的T恤,規(guī)定試銷期間單價不低于成本單價,又獲利不得高于40%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元/件)符合一次函數(shù)ykx+b,且x=70時,y=50;x=80時,y=40;

(1)求出一次函數(shù)ykx+b的解析式

(2)若該商場獲得利潤為w元,試寫出利潤w與銷售單價x之間的關(guān)系式,銷售單價定為多少時,商場可獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù) y=﹣x2+bx+c 的圖象經(jīng)過 A(1,0),B(0,﹣3)兩點.

(1)求這個拋物線的解析式及頂點坐標(biāo);

(2)設(shè)該二次函數(shù)的對稱軸與 x 軸交于點 C,連接 BA、BC,求ABC 的面積.

(3)在拋物線的對稱軸上是否存在一點 P,使得 O、B、CP 四點為頂點的四邊形是平行四邊形?若存在,請直接寫出 P 點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案