【題目】如圖,拋物線y=ax2+bx+c經(jīng)過兩個確定點A、B,其中A為頂點,B為拋物線與y軸的交點.
(1)由拋物線的性質(zhì)可知,該拋物線還經(jīng)過一個確定點C,請寫出找點C的方法(不要求畫圖);
(2)若A(1,4)、B(0,3),求拋物線的解析式.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC;
(2)△ABC滿足什么條件時,四邊形ADCF是矩形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在線教育使學(xué)生足不出戶也能連接全球優(yōu)秀的教育資源. 下面的統(tǒng)計圖反映了我國在線教育用戶規(guī)模的變化情況.
(以上數(shù)據(jù)摘自《2017年中國在線少兒英語教育白皮書》)
根據(jù)統(tǒng)計圖提供的信息,下列推斷一定不合理的是
A. 2015年12月至2017年6月,我國在線教育用戶規(guī)模逐漸上升
B. 2015年12月至2017年6月,我國手機在線教育課程用戶規(guī)模占在線教育用戶規(guī)模的比例持續(xù)上升
C. 2015年12月至2017年6月,我國手機在線教育課程用戶規(guī)模的平均值超過7000萬
D. 2017年6月,我國手機在線教育課程用戶規(guī)模超過在線教育用戶規(guī)模的70%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, ,且,直線經(jīng)過點.設(shè),于點,將射線繞點按逆時針方向旋轉(zhuǎn),與直線交于點.
(1)當(dāng)時, ;
(2)求證: ;
(3)若的外心在其內(nèi)部,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,認真觀察下面這些算式,并結(jié)合你發(fā)現(xiàn)的規(guī)律,完成下列問題:
(1)請寫出:
算式⑤ ;
算式⑥ ;
(2)上述算式的規(guī)律可以用文字概括為:“兩個連續(xù)奇數(shù)的平方差能被8整除”,如果設(shè)兩個連續(xù)奇數(shù)分別為和 (為整數(shù)),請說明這個規(guī)律是成立的;
(3)你認為“兩個連續(xù)偶數(shù)的平方差能被8整除”這個說法是否也成立呢?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y=(x>0)圖象上一點,直線y=kx+b過點A并且與兩坐標(biāo)軸分別交于點B,C,過點A作AD⊥x軸,垂足為D,連接DC,若△BOC的面積是4,則△DOC的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,兩對角線AC、BD交于點O,AC=8,BD=6,當(dāng)△OPD是以PD為底的等腰三角形時,CP的長為( 。
A. 2B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小立設(shè)計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.
已知:如圖1,直線l及直線l外一點A.
求作:直線AD,使得.
作法:如圖2,
①在直線l上任取一點B,連接AB;
②以點B為圓心,AB長為半徑畫弧,交直線l于點C;
③分別以點A,C為圓心,AB長為半徑畫弧,兩弧交于點D(不與點B重合);
④作直線AD.
所以直線AD就是所求作的直線.
根據(jù)小立設(shè)計的尺規(guī)作圖過程,
(1).使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)2.完成下面的證明.(說明:括號里填推理的依據(jù))
證明:連接CD.
∵,
∴四邊形ABCD是___________(_________________).
∴(_____________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過點B(﹣2,0)的直線y=kx+b與直線y=4x+2相交于點A(﹣1,﹣2),4x+2<kx+b<0的解集為( 。
A.x<﹣2B.﹣2<x<﹣1C.x<﹣1D.x>﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com